
Programming language

of MATLAB

Arranger les end des ifelse

NexTech
Rectangle

Introduction Introduction Introduction Introduction

• Like other computer programming languages, MATLAB has its own
decision making structures for control of command execution.

• These decision making structures (often called control flow structures)
include the following constructions :

• for loops,

• while loops,

• if-else-end statements

• Switch – case statements

• Control flow structures are often used in script M-files and function M-
files.

if /if /if /if /elseelseelseelse/ / / / elseifelseifelseifelseif

• No need for parentheses: command blocks are between reserved words

• elseif has no space between else and if (one word)

• no semicolon (;) is needed at the end of lines containing if, else, end

• indentation of if blocks is not required, but facilitate the reading.

• the end statement is required

Conditional statement:

evaluates to true or false

IF (MATLAB syntax)

if cond

commands

end

IF /ELSE (MATLAB syntax)

if cond

commands1

else

commands2

end

ELSEIF (MATLAB syntax)

if cond1

commands1

elseif cond2

commands2

else

commands3

end

if /if /if /if /elseelseelseelse/ / / / elseifelseifelseifelseif (Example)(Example)(Example)(Example)

IF

discr = b*b - 4*a*c;

if discr < 0

disp(’Warning: discriminant is negative, roots are imaginary’);

end

IF /ELSE

discr = b*b - 4*a*c;

if discr < 0

disp(’Warning: discriminant is negative, roots are imaginary’);

else

disp(’Roots are real, but may be repeated’)

end

if /if /if /if /elseelseelseelse/ / / / elseifelseifelseifelseif (Example)(Example)(Example)(Example)

ELSEIF

discr = b*b - 4*a*c;

if discr < 0

disp(’Warning: discriminant is negative, roots are imaginary’);

elseif discr == 0

disp(’Discriminant is zero, roots are repeated’)

else

disp(’Roots are real’)

end

SwitchSwitchSwitchSwitch----case statement case statement case statement case statement

• The switch statement executes groups of statements
based on the value of a variable or expression.

• The keywords case and otherwise delineate the groups.

• Only the first matching case is executed:

Unlike the C language switch statement, MATLAB
switch does not fall through. If the first case statement
is true, the other case statements do not execute. So,
break statements are not required

• The otherwise block is optional and is executed if none
of the case values match the value of variable.

• There must always be an end to match the switch.

%variable on workspace

switch variable

case value1

commands

case value2

commands

case value3

commands3

otherwise %optional

commands4

end

use switch statement to
determine the number of
days in a given month.

SwitchSwitchSwitchSwitch----case statement (example)case statement (example)case statement (example)case statement (example)

month =input("which month?")

switch month

case {1, 3, 5, 7, 8, 10, 12}

disp("31 days");

case {4, 6, 9, 11}

disp("30 days");

case 2

disp("28 or 29 days");

otherwise

disp("Invalid month");

end

For loopsFor loopsFor loopsFor loops

1. The loop variable
➢ Is defined as a vector var
➢ Is a scalar within the command block

2. The command block
➢ as needed commands and comments between the for line and the end

note: ndent the loops for readability, especially when they are nested.

FOR (MATLAB syntax)

for var= initial : increment : final

commands

end

• Example 1:

• Example 2:

For loops (examples) For loops (examples) For loops (examples) For loops (examples)

for ii=1:5

x=ii*ii % same as (1:5).^2

end

n = 5;

for j=2:n

for i=1:j-1

A(i,j)=i/j;

A(j,i)=i/j;

end

end

A=

0 0.50 0.33 0.25 0.20

0.50 0 0.67 0.50 0.40

0.33 0.67 0 0.75 0.60

0.25 0.50 0.75 0 0.80

0.20 0.40 0.60 0.80 0

Isequal(A,A’)

ans= 1

While loopsWhile loopsWhile loopsWhile loops

• The command block will execute while the conditional expression is true

• You can use break to exit a loop

while (MATLAB syntax)

while cond

commands

end

PreallocationPreallocationPreallocationPreallocation

Consider this block which creates a vector a , of 100 elements, element by element.

• Vectorized code is more efficient for MATLAB (LAB session N°1)
• Use indexing and matrix operations to avoid loops
• example: to add every two consecutive termsof a vector:

VectorizationVectorizationVectorizationVectorization

Programs in interactive modePrograms in interactive modePrograms in interactive modePrograms in interactive mode

Programs Programs Programs Programs usingusingusingusing MATLAB EditorMATLAB EditorMATLAB EditorMATLAB Editor

Use the MATLAB editor to create a file;

File New M-file.
Enter the statements ,
Save the file, for example, vectorization.m

M-file script

• A script file is file that contains a sequence of MATLAB statements.

• Script files have a filename extension .m and are often called m-files.

• Run script files using:

• Filename on Command Window

>>vectorisation

• Run icon on the editor tool bar

• After m-file runing,

(a, b, and i) variables appear

on the workspace.

MMMM----Files ScriptsFiles ScriptsFiles ScriptsFiles Scripts

All variables created in a script file are added to the workspace. This may have
undesirable effects, because:

• Variables already existing in the workspace may be overwritten.

• The execution of the script can be affected by the state variables in the
workspace.

As a result, because scripts have some undesirable side-effects, it is better to code
applications (specially complicated ones) using rather function M-file.

MMMM----Files ScriptsFiles ScriptsFiles ScriptsFiles Scripts

UserUserUserUser----defineddefineddefineddefined functionsfunctionsfunctionsfunctions

• Functions look exactly like scripts,
but for one difference
➢ Functions must have a function
declaration

UserUserUserUser----defineddefineddefineddefined functionsfunctionsfunctionsfunctions

• No need for return

• Variable scope: “local variables”

• Invoking functios using their filename
(script or command window)

UserUserUserUser----defineddefineddefineddefined functionsfunctionsfunctionsfunctions

Example

• Given X = sin(linspace(0,10*pi,100))

• How many positive entries are their in X.

• X=

Sin(0) i=1 Sin(pi) i=2 Sin(100*pi)

sin(0)>0

cpt=cpt+1

sin(x(i))

>0

cpt=cpt+1

sin

(x(end))>

0

cpt=cpt+1

oui

non

oui

non

oui

non

Example

Example

• MATLAB functions are generally overloaded :
➢ Can take a variable number of inputs
➢ Can return a variable number of outputs

Overloading

>> A=randi([1 10],3,4);

>> a=randi(5,2),

>>aa=randi([-1 3])

>> B=size(A); %vector

>> [n,m]=size(A); %2 scalars

>> size(A,1);

• Users can overload their own functions by having variable
number of input and output arguments

(using : Nargin, nargout, varargin, varargout, inputname , ….)

Example :

function myplot(x,varargin)

function [s,varargout] = mysize(x)

Overloading

Overloading

>>example_n_arg(A,2)

>>example_n_arg(A,1)

>>example_n_arg(A)

>>example_n_arg()

Overloading

Nargin=2, 3, 0,….

>>example_n_arg(A)

>>example_n_arg(A,2)

>>example_n_arg(A,1)

>>example_n_arg()

n=2, 3, 0,….

Debbuging

Debugging is the process of identifying and fixing errors, or "bugs," in computer
programs. A debugger is a software tool that helps programmers debug their code
by allowing them to inspect variables, control program execution, and analyze the

flow of their program. Debuggers are essential for efficiently locating and

resolving issues in code.

The MATLAB editor is both a text editor specialized for creating M-files
and a graphical MATLAB debugger

To use the debugger, set breakpoints
➢ Click on – next to line numbers in m-files
➢ Each red dot that appears is a breakpoint
➢ Run the program
➢ The program pauses when it reaches a breakpoint
➢ Use the command window to probe variables
➢ Use the debugging buttons to control debugger

Debbuging

Debbuging

