Petroleum Assays

PETROLEUM ASSAY MANAGEMENT:-

The new Assay Management features in Aspen HYSYS Petroleum Refining allow users to use the same assays in Aspen HYSYS Petroleum Refining and Aspen PIMS, get better results for crude modeling using the improved characterization and property calculations of Aspen Assay Management, and access an extensive database of crudes and crude properties with the new assay library, and easily import data from other sources.

To use the Petroleum Assay Management we need to access the "Petroleum Assays" in the Properties Environment by:

- Click "Petroleum Assays" in "Home" tab in the Ribbon.

· Click "Petroleum Assays" in the navigation pane.

1. ADDING A NEW ASSAY:-

Under Petroleum Assays, you can add a new Assay by clicking the dropdown arrow and select one of the three methods available:

- o Import from Library: Select an assay from the Assay Library.
- o Import from File: Import a supported Excel, CSV, or .AFAM case with assay data.
- o Manually Enter: Manually enter data into the Assay Table.

💌 i 🔒 🖓 🛄 i i	AAM	Untitled - Aspen HYSYS V8.6 - aspenONE			_ 6 ×
File Home View Customize Resources	Assay Management			Search aspenONE Exchange	🔽 o 🧕
New Assay Assay Molecular Methods					
Properties « Component Lists ×	Petroleum Assays 🛛 🕂				*
All Items - Assay Summary					
E Component Lists					
Display: All Region	5 -				
Petroleum Assays Reactions Ass Component Maps	say Characterization	Status Fluid Package	From Source Density (kg/m3)	Sulfur (%) Viscosity (cSt) @ 37.78 C	Watson K
User Properties B*		84 T 84 T	84	T = T	
Properties					
-C Simulation Add	xport Copy I	lelete			
Import from Library					* 0 ×
Manually Enter					* * ×
SY Energy Analysis	ges Select property package mis Empty component list imponent list Empty componen	list			
				100% Θ	

1.1. IMPORT FROM LIBRARY:

You can add pre-characterized assays from the HYSYS Petroleum Refining assay libraries.

Search Crit	eria 🛈							_			
Select library:	All		Property	Minim	um Maximum	Unit	Clear				
Assay name:			Density		arch hu	API					
Assay name:			Sulfur	or se	earch by	96					
Region:	All Regions	1	Viscosity	CO	mmon	c5t					
-			TAN	pro	perties	mg KOH/g					
Country:	All Countries		Pour Point			c					
Select Assay -											
	Assay		Library Name	Assay date:	Region	Country	Density(API)	Sulfur(%)	Viscosity(cSt) @ 37.78C	TAN(mg KOH/g)	Pour Point(C)
<u>A</u> a		•	<u>6</u> 1	<u>6</u>	• <u>A</u> a •	· Aa 🔹	=	· =	= -	=	=
Champic	on Export, Brunei		Assay Library		Asia	Brunei	24.4816	0.136	15.219	0.000	-47.174
Seria Lig	ht, Brunei		Assay Library		Asia	Brunei	39.1043	0.068	2.050	0.000	-20.136
Shengli,	China		Assay Library		Asia	China	24.7429	1.005	58.885	1.160	24.939
Taching(Daqing), China		Assay Library		Asia	China	33.2968	0.086	15.356	1.160	35.775
Sepingar	n-Yakin Mixed (4:1), East	t	Assay Library		Asia	Indonesia	31.7000	0.110	2.806	0.300	
Bombay	High, India		Assay Library		Asia	India	44.0435	0.018	1.701	0.000	22.064
Ardjuna,	Indonesia		Assay Library		Asia	Indonesia	38.2951	0.106	1.211	0.300	4.755
Arimbi, I	ndonesia		Assay Library		Asia	Indonesia	33.0997	0.164	7.719	0.300	25.685
	ndonesia		Assay Library		Asia	Indonesia	42,3000	0.018	1,459	0.300	

1.2. IMPORT FROM FILE:

Import /	Assay Data	from Files	×
Assay data format:	AspenTech	1 •	
Assay files:			₽ 2 ×
	Import	Cancel	

					Open					
1	👔 > This PC > Document	s > Assays				۷Ő	Search Assays			
Organize 🔻	New folder							;≡ •		
lame	*	Date modified	Тура	Size						
🖞 New Assay	0	9/8/2015 11:03 PM	Aspen Feedstock	65 KB						
	File name: New Assay					2	Data File(*,AF/ Open	-	m; ^.d Cance	

Import	Assay Data from Files
Assay data format:	AspenTech 🔹
Assay files:	New Assay 1
	2 Import Cancel

1.3. MANUALLY ENTER:

By choosing "manually enter", the New Assay dialog box appears where you <u>enter a name</u> for the new assay in the New Assay dialog box, and <u>select a Fluid Package</u> to apply to the assay. You can pick one from the list or click <Create New> to create a new one.

<u>Note:</u> If no fluid packages have been created for the new assay, HYSYS automatically creates and attaches a preset petroleum fluid package to the assay with default components and hypotheticals. This applies to all options to create a new assay unless you import a .CSV file or a third party assay.

Then, Select the assay type: Multi Cut Properties, Single Stream Properties, or Back Blending.

1.3.1. MULTI CUT PROPERTIES:

Multi Cut Properties - lets you enter cuts with their initial and final boiling points. This is ideal if you have data for specific assay cuts that you wish to enter, such as Cut Yields. Here, you can set the number of cuts from your data and enter the boiling point ranges in the table provided.

D			New Assay	×							
Nan	ne:	Assay - 1	1 Fluid Package	Basis-1 2 -							
© <u>M</u>	lulti (Cut Propertie	Number of Cu	its: 5							
🔘 Si	© Single Stream Properties You can change										
🔘 Ba	ackBl	ending		the No. of Cuts							
	0	Name 🏹	Initial BP(C) 🛛 🏹	Final BP(C)							
	Þ	Cut 1	IBP	25.0000							
	₽	Cut 2	25.0000	120.0000							
	Þ	Cut 3	120.0000	275.0000							
	Þ	Cut 4	275.0000	375.0000							
	$\left \cdot \right $	Cut 5	375.0000	FBP							
	Ł										
		5	OK Can	cel							

1.3.2. SINGLE STREAM PROPERTIES:

Single Stream - lets you define the distillation percent and temperature of individual streams. This option is ideal if you want to evaluate an assay from distillation data and bulk (whole crude) properties to create a single-stream for your model.

- A. In the Curve type row, specify the method used for distillation: TBP, D86, D2887 or D1160.
 - Specify the Basis: By mass or By volume.
- B. You can adjust the number of distillation Points by adding or removing Point.

After Adding the Assay Data Either with Multi-Cut or Single Stream, The "Input Assay" Form Displays ...

Use the **Input** Assay form to enter available experimental assay data including properties, pure components composition, and distillation data for different product cuts.

 Input Summary tab Display property data for the whole crude and product cuts.

hit Home They Dari	A.00.1		Pubruame	.hsc - Aspen	HISTS VED -	aspancine			Search are	erONE Euchange	- 6
	Nolecular Methods	anageneni								antona pantonyo	
e portios	/ Petroleum Assays > Assay - 1	Input Assay 🖂	+								
litero -	1 Inpet Summery Plan Camp	week Notline	Date								
Component Lists Fluid Packagen Petroleum Assays		Whole Crude	Cut 1	Cat 2	Cut 2	Cut 4	Cut 5	Cat 6	Cut 7 254,0000	Gat 8	
> 🗹 Shangli, China > 🗹 Shangli, China - 1 4 🗹 Assay - 1	Enal Temperature (C)	FBP	34,0000	76,0900	98.0000	120.0000	198,0000	254.0000	302.0000	FBP	Associated and a second
Input Assay	CutVialdByWtt (%)	108.00	5.00	5.00	20.00	20.00	20.00	20.00	5.00	5.00	-
F 🖂 Assay - 2 Reactions	StalLiquidDensity (kg/m.)										
Component Maps	SulfurByWit (%)							_			
🕞 Ucer Properties	KinematicViscosity IcS0		de	ofine ti	ne pror	perty d	ata for				
	Paraffirs8yVol (%)					-					
	AramByVal (%)		th	e whoi	e crua	e and p	produc	τ			
	PourPoint (C)										
	NitrogenöyWt (%)										
	VaradiumByWt (%)										
	ConredsonCarbonByWt.										
Properties											
Simulation				Anny	In Characterized					Characterize/	kmay 💌
Safoty Analysis	Messages										
Energy Analysis											
										100% 🖂	

Allitere I Import Summary Paue Campo Field Rectage So Reing Rectage Import Summary Paue Campo Field Rectage So Steingt, China Import Summary Paue Campo Field Rectage So Standson So Summary So Summary So Component Maps Summary Paue Campo Field Rectage Paue Campo Field Rectage So Rectage So Summary So Summary Paue Campo Field Rectage So Rectage So Summary So Summary Paue Campo Field Rectage So Rectarge So Summary So Summary So Summary Statute Paue Campo Field Rectage Paue Campo Field Rectage Paue Campo Field Rectage Paue Campo Field Rectage Paue Campo Field Rectage Paue Campo Field Rectage Paue Campo Field Rectage Paue Campo Field Rectage	Whole Coude Whole Coude BP HBP	Curl 1 189 34,8000 5.00	Cat 2 34.0000 76.0900 5.80	Cut 3 76.0000 96.0000 20.00	Cut 4 90.0000 120.0000 20.00	Cut 5 120.3000 198.4000 20.00	Cut 6 196,0060 254,0060 20.06	Cut T 254,0000 302,0000 5,00	Cut II 302.0000 FBP 5.00	Clust Is Astr Cut
PaseffineBy/iol (%) AnomByViol (%)		d								
Normalism (c) Normalism (V)((c) Variation (R)(V)(C) Connection (R)(V)(C)			efine ti e whol		erty d e and p					
Properties Simulation Satury Analysis References			Anay	Un Characterized]				Characteri	ise Amey 💌

n

· · · ·

Distillation Data tab Display distillation data, such as TBP or D86 curve, of the whole crude or any product cuts.

	obornize Researces Assay Manage	CHICFÉ	Acpen HYSYS V8.5 - acpenCINE	– 🖪 🔽 Seanh aiperCNH Bickerge 🚺 A 🤯
Properties C Alltern - I © Component Lists - I © FairPackage - I © Stangs China - 1 - I © Stangs China - 1 - I was Accopy - I was Accopy	Petrikum Astass Assay - 1 - Imp ImputSummary Pure Con S ImputSummary Pure Con S ImputSummary Pure Con S ImputSummary Pure Con S ImputSum Distillation S ImputSum Imput	Ntilletien Dats Utilitetien Dats Utilite	Set New Cut Cut Name New Cut Initial Temporature Cut Initial Temporature Cut	
Poperies Poperies Sinulatios Sinulatios Serry Analysis Serry Analysis	Messager	254.80	Attury Lin Draws stariond	Cheresterios Amag ▼

1.3.3. BACK BLENDING:

Back blending - lets you define feed streams by blending their associated products. The input products are typically defined in commercial distillations that have significant overlap across products. Backblending creates an assay from these overlapping measurements that can be used as a HYSYS Petroleum Refining feed stream.

•	New Assay X										
Name:	Assay - 2	Fluid Package:	Basis-1 T								
© Multi (Multi Cut Properties Number of Cuts: 5										
© Single	O Single Stream Properties										
BackBl	BackBlending										
	OK(h) Cancel										

After selecting Backblending, the Backblending Input Form appears on the navigation pane instead of the Input Assay Form.

Light Streams tab

Enter the component percentage for each assay and the cut yield of the total blend of each cut. The percentage of the same component on the light streams form and the heavy stream form should add up to 100%; if not, the value need to be normalized.

🕑 : 📙 O 🚍 🗉	144		IoName.hsc - Aspen HYSYS V8.6 - aspenONE	- 🗗 🗴 Stach aspenONEEschonge 🗾 a 😜
File Home View Custon		nent		Search aspenONE Exchange 🛛 😰 🗠 😵
🛅 🔄 🄶 P	Molecular Characterization			
New Characterize Download Assay - Assays				
Assy	Molecular Methods			
Properties C	Petroleum Assays × Assay - 2 - Back	Blending × ±		•
Alliten:	Light Streams Heavy Streams			
Component Lists		New_Cut	Click to Add	
Gereid Fackages Gereiden Assays	4	HEN_CO.	Stream b	
🕨 🗹 Shengli, China	Curve type	TBP	0	
🕨 🔁 Shengli, China - 1	Banis	By mass		
Image: Joint Assay - 1 A Assay - 2	Units	۲ 🖌 ک		
BackElending	Distillation %	~	Set New Cut	
IS REACTORS	0	1.1	3	
Component Maps	10	1	Stream Name New_Cut	
	90		OK Cancel	
	95			
	100			
	Propertys			
	CutVieldByVol (%)			
	StaliquicDensity (kg/m3)			
Tana	-			
Preperties				
⊃¦ [□] Simulation			Tess then 3 ruts in Henry Stream	Characterize Assay 💌
19 L				
🕍 Safety Analysis 🔣	esages			+ # X
🚯 Energy Analysis				
				10/% 🖂 🚽 🛞

 Heavy Streams tab Enter the distillation yield and property data for each cut.

Notes:

- o At least 3 cuts in Heavy Stream are needed.
- o In the Curve type row, specify the method used for distillation: TBP, D86, D2887 or D1160.
- Specify the Basis: By mass or By volume.
- o You can adjust the number of distillation Points by adding or removing Point.

After All Data Has Been Added Using Any Method From The Previous Three Methods (i.e. Multi-cut, Single Stream, or Back Blending), The Assay Need To be Characterized By Clicking on "Characterize Assay" Button ...

2. CHARACTERIZING ASSAY:-

	stonize Resources Assay Ma	nagement	Noname	hsc - Aspen	HI212 V6.0 -	aspenuine			Search au	enOWE Escha	- 6 🔤 🗠
erw Characterize Download 39/* * Download Assay operties * Ittems *	Nolecular Methods Petroleum Assays - 1 Inpet Summery Page Campo	Input Assay ×									
lig Component Lists ig Fluid Packages ig Petroleum Assays ▷ Shengli, China ▷ Shengli, China - 1	Initial Temperature (C) Final Temperature (C)	Whole Crude BP FBP	Gut 1 18P 34,0000	Cat 2 34.0900 76.0900	Cut 3 75.0000 95.0000	Cut 4 98.0000 120.0000	Cut 5 120,8000 196,8000	Cat 6 198,0000 254,0000	Cut 7 254,0000 302,0000	Cut 8 302.0000 FBP	Cick to Ass Cut
al C Assay - 1 Input Assay Assay - 2 Reactions	CuttrieldByttt (%) StolliquidDennity (kg/m	108.00	5.00	5.00	20.00	20.00	20.00	20.06	5.00	5.00	
Component Maps	SuFurByWt (%) Kinematic/iscoity (50) PassfireByVol (%) AromByVol (%) PourPoint (C)	E	Please wait r	ipen Assay M Nile we charact aracterizing ass	erice the selects	-	0%				
	NitrogenByWt (%) VaradiumByWt (%) ConradionCarbonByWt										
Properties	•			Astav	Jn Characterized					Character	ize Assay -
2 Safety Analysis	Messeger										ندن .
Energy Analysis											
aracterizing an assay										1075 Θ	

Assay manager will take a few second to characterize the assay, when the characterization finishes, a Conventional Results node will appear under the assay sub-node for each characterized assay. And the status of characterized assays becomes Characterized Successfully on the Petroleum Assays form.

Accesy.	Cutifields Distillations Proge	ties Viscosti		olecular Characte	rization						ngue 🚺 o
	Plat Gallery			Molecular Metho	_						
portios « Z	Petroleum Assays 🗵 Assay - 1 -	Input Assay 2 /3	Islay - 1 - Conv	ventional Results	1× [1						
terro -	Recult: Summary Pure Comp	oment Distillatio	n Property Tel	ble 🛆 Message	•						
Component Lists Fluid Packages	0 2	Whole Cr	cu 4		Cut 3	Cut 4	CutS	Cut 6	Cut 7	Cut 8	
🖹 Petroleum Assays	Initial Temperature IC)	98	6P	34.0000	T6-0400	98,0000	120.0000	198.0000	254,0000	302,0000	Click to Ass Cut
Shengli, China - 1	Final Temperature (C)	FBP	34,0000	76,0000	\$8,0000	120.0000	198.0000	254,0000	302.0000	FBP	
Assey 1	4										
Impret Assay	CuthideByWt(%)	94.82	0.00	6.00	18.67	20.15	20.52	19.20	5.57	472	
Conventional Results	StdLiquidDensity (kg/m.)	659.3770	272.5411	650,4521	679,8033	094.1230	723,9384	754.3810	774.0863	784.1025	
Reactions	 SulfurByWit (%) 	0.090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Component Meps	Kinematic/incosity (c58)	0.689		0.389	0.477	0.957	0.853	1.604	2.834	4.040	
User Properties	 ParaffindByliol (%) 	75.005	100.000	72.220	69.945	70.962	72.976	73.010	69.972	65.225	
	AromByVol (%)	0.090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	PourPoint (C)	-113.446	-282,795	-145.592	-128.975	-115.551	-87.877	-52.822	-24.251	-1,422	
	NitrogenByWt (%)	0.090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	VanadiumByWt (%)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	ConvadionCarbonByWt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Properties											
rioperees					_						
Simulation					C K						View Inputs
					\sim						
Safety Analysis	lexagec										*
Energy Analysis											

The Conventional Results form consists of the following tabs:

- Results Summary tab
- Pure Component tab
- Distillation tab
- Property Table tab
- Message tab

By default, the Message tab displays all the irregularities found during the assay characterization, such as the violation of the minimum and maximum bounds of a property. Assay Management divides the irregularities into Error and Warning.

Use the Results Summary tab, Pure Component tab and Distillation tab on the Conventional Results form in the same as for the three tabs of the Input Assay form (page 6-7).

Data changes on the Input Assay form after characterization, such as adding, removing or modifying cut or/and property data, appear automatically on the Conventional Results form when the assay is recharacterized. In addition, any new cuts or properties that have been added or modified on the Conventional Results forms are retained.

Also after characterization, the **Plot Gallery** appears in the ribbon. These plots can be used to visualize the quality of assay data, and to compare different assays and properties.

The Plot Gallery of the Assay Management ribbon contains the following plot types:

- Distillations plot
- Properties plot
- ✓ Cut Viscosities plot
- ✓ Cut Yields plot
- ✓ PNA plot
- Viscosities plot

To compare data from more than one crude assay, the second crude must be added, you can add it to the plot by clicking "Select Assays" under the Format tab when the Plot is selected.

9 . I			Plat		oName.hsz - Aspen HYSYS V8.6 - aspenONE	_ 6 _ X
Bio	Home Tiew	Customics Reco	uron Permat			Search aspenCNE Bishonge 🗾 🔉 📦
周	Min	Max	-	Type Mesh	 Z Edit Legend & Define Cut Show input data 	
12.0	XANS -1175	390	🛛 Ule Auto Scale	Display Unes Only	[™]	
Select Ascience	Y Aves 0	100	2 Use Auto Scale	Rip Coordinates	See Add Text Each Weight -	
		doin.		Citi Settina	Dati	

3. Using Assays In The Simulation:-

When an assay has been created and characterized in the Properties Environment, it can be immediately used for modeling in the Simulation Environment. To bring the assay into the simulation, it must be either attached to a stream or added to a Petroleum Feeder unit operation.

3.1. ATTACHING ASSAY TO A STREAM:

If the assay will be modeled as a single-stream, you can typically attach it to a material stream in the flowsheet. First, add a material stream to the flowsheet. Then, open up the stream view by double-clicking the newly created stream and click on the "Petroleum Assay" option in the Worksheet tab. In the Assay form, select the Attach Existing option which will show a dropdown list where the previously created assay can be selected. Once a characterized assay is attached, it will define the composition and the properties of the stream so that the user just has to enter the conditions of the stream for it to be fully defined.

3.2. ADDING ASSAY TO PETROELUM FEEDER:

If more than one assay will be used or if the assay will be mixed with another stream, they can be added to a Petroleum Feeder. In the Feeder, you can select input feed streams and feed assays (as well as mixing specifications including a fluid package) and Aspen HYSYS will calculate a product stream that can be used in the flowsheet.

😸 : 티 이 🌾 🖂 🏭 🗤		NoName.hsc	- Aspen HYSYS VB.6 - aspe	nONE		- 6 ×
hit Hone Dearonits	Dynamics View Castomice	Resources			Search aspenOWE Exchan	e 🖸 🖉
CaCopy= 💠 Unit Sets 🖉	Precess Utility Manager TAdive Adjust Manager Thield Package Associations Statistics 5 Solver 15	Warkbaak Reparts Direct		Cese Studies Status Ar Data Pits Ricquipree Coptimizer Model Ar Analysis	t Design - A Depressuring	
Simulation 4	/Flowsheet Main - Solver Active ×		Bairnla	um Feeder: Feeder-100	_ 0 ×	
Alliture -		· · · · · · · · · · · · · · · · · · ·	Parameters Worksheet Liser V	ariables		-
 Cal UraCom Cal Stearn Analysis Stearn Analysis Exploremt Design Data Tailes Strip Charts Cas Strip Stelliss Data Fits 	Feeder-100	Connections Connections Notes	Feed Assays Sharegit, Chica, ~ <emptys Feed Streams Compilys</emptys 		dur 519an eed v id Fackage min-1 v	
🚡 Properties	د	Delete		CK.	[] Ignored	
Safety Analysis	Messages					* 8 ×
69 Energy Analysis	nerceg rc		Completed.			
Solver (Main) - Ready					100% 😔	⊛

Connections	Parameters	Worksheet Us				
Parameters	- Flow Ratio	s and Boiling Rar	iges	Polones	Tura Mala	
Parameters				Balance	Type Mole	
			Ratio	IBP	FBP	
	Shengli,	China	<empty></empty>	-252.6	900.0	
	Assay -	1	<empty></empty>	-252.6	900.0	
		We need	Jsing more to specify	the ratio	for each	
		We need	to specify stream in th	the ratio ne Parame	for each	
		We need	to specify	the ratio ne Parame	for each	

HÝSÝS OPTIMIZER

INTRODUCTION: -

Optimization, in general, can be defined as the process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible; specifically: the mathematical procedures (as finding the maximum of a function) involved in this.

That's mean, we try - in optimization - to find the operating conditions which minimize (or maximize) an Objective Function. This objective function expresses (Mathematically) the intended purpose behind the process of Optimization.

For example, if we want to achieve the highest profit, it means that we want to reach the perfect (Optimum) value of the operating conditions which achieve the highest profit without affecting the required quality thus, the **Objective function** here is the equation that expresses the profit, any variable whose values are manipulated in order to minimize (or maximize) the objective function are called **Primary Variable**, and the required quality specification is a **Constrain** on the extent of change in the allowable values of the variables.

So, Objective Function is created by studying the whole process with its all variables, conditions, and constrains, and studying their relation with the desired goal of the optimization process.

HYSYS contains a multi-variable steady state Optimizer, the object-oriented design of HYSYS makes the Optimizer extremely powerful, since it has access to a wide range of process variables for your optimization study.

- To access the Optimizers:
 - Select the Home ribbon tab | Analysis section | Optimizer icon.
 - or
 - Press F5.

Use the Configuration tab of the Optimizer to select the Optimizer mode you want to run.

Configuration Varia	ables Funct	tions	Parameters	Monitor
Optimizer Configura	ation)	
Data Model —				
Original				
Hyprotech 9	SQP			
MDC Optim	1			
Selection O	ptimization			
O DMO				
C LSSQP				
BOBYQA				
Online				

Notes:

- There're many different models of optimization, each differ in the method and algorithm that is used in solving the optimization, we will go through the default model which is the "Original" model.
- The Optimizer is available for steady state calculations only. The operation does not run in Dynamic mode.

SETTING UP ORIGINAL OPTIMIZER: -

After choosing the optimizer model, we need to setup our optimizer before pressing "start" for starting the solver of the optimization. The setup process goes through different steps in different tabs in the optimizer window, we will discuss each one with details in the following sections.

• The Variables Tab:

On the Variables tab, you can import the primary variables which minimize or maximize the objective function. Any process variable that is modifiable (user-specified) can be used as a primary variable. (Only user-specified variables can be used as Primary Variables.)

Doptimizer	0					-		×
Configuration Variab		Monitor						
Adjusted (Primary) Var	riables							
Object	Variable Description	Low Bound	Current Value	High Bound	Reset Value Enable	d		
		1.1			Reset Current	1		
<u>A</u> dd 2	E <u>d</u> it De	elete		Save Current	Reset Curre <u>n</u> t			
Delete	SpreadSheet			Proceed			Start	

関 Add Variable to Optimizer			- 🗆 🗙
Context	Objects	Q Variables	٩
▷ Case (Main)	Object Type	Choose the required Object	Then, Choose the required Variable
Description: 3 Write	a suitable de	escription for the variable	
			4 Select

Optimizer						-	
figuration Variab	oles Functions Parameters	Monitor					
justed (Primary) Va	riables						
Object	Variable Description	Low Bound	Current Value	High Bound	Reset Value	Enabled	
Reactor Prods	Temperature	30.00	60.00	120.0	<empty></empty>	V	

Each primary variable has the following values:

- Low Bound: The Lowest value that optimizer can assign for the variable for solution.
- High Bound: The Highest value that optimizer can assign for the variable for solution.
- Current Value: The Current used value for the variable in the simulation.

In general, the primary variables should not be part of the Objective Function.

• <u>The Functions Tab:</u>

🕑 Optimizer	—		Х
Configuration Variables Functions Parameters Monitor			
Cell Current Value <empty> Minimize Maximize</empty>	1		
Nur LHS Cell Current Value Cond RHS Cell Current Value Add			
Delete			
Delete SpreadSheet Proceed		Start	

In the functions tab we specify the following (according to the above numbering in the picture):

- 1- Specify the cell in the Spreadsheet that represent the Objective Function.
- 2- Choose whether we need to maximize or minimize that objective function.
- 3- Specify the cells in the Spreadsheet that represent the Constrains Function. Any constrain function is represented in the form of

Left hand side condition Right Hand Side

- a. Click Add to add a new constrain. (a new constrain row will be added).
- Under LHS Cell, select the cell from the spreadsheet that represent the Left side of the constrain function.
- c. Under Cond, select the proper condition between the right side and left side (e.g. >, =, <)
- d. Under **RHS** Cell, select the cell from the spreadsheet that represent the Right side of the constrain function.

The Optimizer Spreadsheet

It's clear from the above sequences that in the functions tab we don't create the functions (objective or constrains) in that tab instead, we just select a Cell in the spreadsheet which has the function created in it.

For that reason, we must go through the spreadsheet to know how to build our functions before continue with the remaining Optimizer Tabs.

The Optimizer's Spreadsheet is identical to the HYSYS Spreadsheet operation; process variables can be attached by dragging and dropping, or using the Variable Navigator. Once the necessary process variables are connected to the Spreadsheet, you can construct the Objective Function and any constraints using the standard syntax.

We can access the Optimizer's spreadsheet by clicking the "SpreadSheet" button that locate in the bottom of each tab of the optimizer.

🕑 Spreadsheet: C	OptimizerSpreadsheet						—		\times
Connections Pa	arameters Formulas	Spreadsheet Calculati	on Order U	lser Variables	Notes				
Imported Varial	bles								
Cell	Object	Variable Descript	ion				Edit	Import.	
A1	Prop Oxide		Mass Flow	1			Add	Import.	
	- The Cell in Sprea	dsheet		Тр	e Importec				
l d	hat contain the the Imported Va	/alue of			Variable	' J	Dele	te Impo	rt
	the imported va	mable.		_					
Exported Variab	oles								
Cell	Object	Variable Descript	ion				Edit	t Export	
	object	valiable Descript	.011						
							Add	l Export	
							Dele	ete Expor	rt
	Functio	on Help	Spreadsheet	Only				🔲 Igno	ored

\rightarrow <u>Connections Tab:</u>

You can import virtually any variable in the simulation into the Spreadsheet, and you can export a cell's value to any specifiable field in your simulation.

There are two methods of importing and exporting variables to and from the Spreadsheet:

- 1. Using the Variable Navigator:
 - a. On the Connections tab, click the Add Import or Add Export button.
 - b. Then using the Variable Navigator, select the variable you want to import or export.
- 2. Dragging Variables:

Simply right-click the variable value you want to import, and drag it to the desired location in the Spreadsheet. If you are exporting the variable, drag it from the Spreadsheet to an appropriate location.

After importing variables, In the **Cell** column, type or select from the drop-down list the Spreadsheet cell to be connected to that variable. When you move to the Spreadsheet tab, that variable appears in the cell you specified. (see previous figure).

\rightarrow <u>Parameters Tab</u>:

On the Parameters tab of the Spreadsheet property view, you can set the dimensions of the Spreadsheet and choose a Unit Set.

関 Spreadsheet:	: OptimizerSp	oreadsheet						\times
Spreadsheet	Parameters	Formulas Spread		Dynamic Executio	n			
Number o Number o Units Set	of Rows	4 10 Field Spreadsheet's Varial		Before Pressure- After Pressure- Each Composit Alway Update	Flow Step ion Step			
Cell	Visible	Name	1	/ariable Name	Variable	Type		
B1		B1:			Cos	st Per Volume		
B2		B2;			Cos	st Per Volume		
B3		B3:			Co	st Per Volume		
B4		B4:			Cost Ind	ex per Energy		
B5		B5:			Cost Ind	ex per Energy		
C1		C1:						
C2		C2:						
C3		C3:						
C4		C4:						_
C5		C5:						_
C7		C7:						
L		Function Help.		Spreadsł	eet Only		🔳 Ign	ored

\rightarrow Formulas Tab:

The Formulas tab displays a summary of all the formulas included in your spreadsheet. The table lists the name of the cell the formula is located in, the formula and the result of the formula.

→ <u>SpreadSheet Tab:</u>

The Spreadsheet tab is similar to conventional Spreadsheets (e.g. MS Excel).

Ð	Spre	adsheet: OptimizerSprea	adsheet			-		×
С	onneo	ctions Parameters Fo	ormulas Spreadsheet (Calculation Order User	/ariables Notes			
			rop Oxide tc Ideal Liq Vol Flow Th		able 🗌 in: Rad	Edit Rows/Columns		
		А	В	с	D			*
·	1	714.1 barrel/day	7.000 Cost/bbl	4998				
2	2	712.4 barrel/day	20.00 Cost/bbl	1.425e+004				
3	3	-4.520e+006 Btu/hr	2.000e-006 Cost/bbl	-217.0				
4	4	1.744e+007 Btu/hr	2.000e-006 Cost/Btu	837.3				=
4	5	1.955e+007 Btu/hr	2.000e-006 Cost/Btu	938.3				
(6							
	7			7692				
8	8							
9	9							
ŀ	10							-
			Function Help	Spreadsheet Only			🔲 Ignor	ređ

The Current Cell group displays information specific to the contents of the highlighted cell.

 If the Cell contain an imported value: The object and variable from which the contents of the current cell were imported are shown. You cannot change the Variable name, since it is a HYSYS default.

Current Cell Imported From:	Prop Oxide	Exportable	
A1 Variable:	Std Ideal Liq Vol Flow	Angles in: Rad	

- If the Cell contain a specifiable value: The Variable Type and Variable Name are shown. You can choose a new Variable Type from the drop-down list, and you can edit the Variable name.

Current Cell Variable Type:	Cost Per Volume	▼ Exportable 📝
B2 Variable		Angles in: Rad

The HYSYS Spreadsheet has extensive mathematical and logical function capability.

The Available Expressions and Functions property view contains the following tabs:

- Mathematical Expressions
- Logical Expressions
- Mathematical Functions

Note: All functions must be preceded by "+" (straight math) or "@" (special functions like logarithmic, trigonometric, logical, and so forth).

To view the available Spreadsheet Functions and Expressions, click the Function Help button to open the Available Expressions and Functions property view.

Most Common Used Operations			
Addition	Use the "+" symbol.		
Subtraction	Use the "-" symbol.		
Multiplication	Use the "*" symbol.		
Division	Use the "/" symbol.		
Absolute Value	"@Abs".		
Power	Use the "^" symbol. Example: $+3^3 = 27$		
Square Root	"@SQRT". Example: @sqrt(16) = 4		
Pi	Simply enter "+pi" to represent the number 3.1415		
sin	@sin()		
cos	@cos()		
tan	@tan()		
sinh	@sinh()		
cosh	@cosh()		
tanh	@tanh()		
Ln	@ln()		

• The Parameters Tab:

The Parameters tab is used for selecting the Optimization Scheme and defining associated parameters.

U Optimizer		—		Х
Configuration Variables Functions	Parameters Monitor			
Optimizer Parameters				
Scheme	Mixed			
Maximum Function Evaluations	300			
Tolerance	1.000e-05			
Maximum Iterations	30			
Maximum Change/Iteration	0.3000			
Shift A	1.000e-04			
Shift B	1.000e-04			
Delete SpreadSk	Proceed		Start	

Summary of the Optimizer Schemes					
Method	Unconstrained Problems	Constrained Problems: Inequality	Constrained Problems: Equality	Calculates Derivatives	
BOX	х	Х			
Mixed	х	х		х	
SQP	х	х	х	x	
Fletcher- Reeves	x			Х	
Quasi- Newton	x			Х	

• <u>The Monitor Tab:</u>

The Monitor tab displays the values of the objective function, primary variables, and constraint functions during the Optimizer calculations. New information is updated only when there is an improvement in the value of the Objective Function. The constraint values are positive if inequality constraints are satisfied and negative if inequality constraints are not satisfied.

0 🕑	ptimizer					-		Х
Con	figuration Variables	Functions Parameters	Monitor					
<mark>0</mark> م	ptimizer Monitor Inform	nation						
	1	C . T . T . I		Temperature	0			
	Iteration	Cum. Func. Eval.	Objective Function	[C]	Constraint 1			
	4.00000	5.00000	8571.94	106.200				
	3.00000	2.00000	8569.00	105.000				
	2.00000	4.00000	8568.98	105.000				=
	1.00000	2.00000	8303.82	75.0000				
								- 11
								*
	Delete	SpreadSheet	C	ptimum found (SmallDe	eltaF)		Start	