Abd El HafidBoussouf University Center - Mila Institute of Science and Technology **Process Engineering**

Heat Transfer Final Exam

Closed Notes, DO NOT Write on this Sheet, Show All Work

Problem 1 (3 marks):

Consider a 1.5-m-high and 2-m-wide triple pane window. The thickness of each glass layer $(k_{glass} = 0.80 \text{ W/m.K})$ is 0.5 cm, and the thickness of each air space $(k_{air} = 0.025 \text{ W/m.K})$ is 1 cm. If the inner and outer surface temperatures of the window are 10 °C and 0 °C, respectively, find the rate of heat loss through the window.

Problem 2 (3 marks):

A soldering iron has a cylindrical tip of 2.5 mm in diameter and 20 mm in length. With age and usage, the tip has oxidized and has an emissivity of **0.80**. Assuming that the average convection heat transfer coefficient over the soldering iron tip is 25 W/m^2 .K, and the surrounding air temperature is 20 °C, determine the power required to maintain the tip at 400 °C.

Problem 3 (4 points):

A new heat transfer fluid called *ThermoKool* ($\mathbf{k} = 0.1414 \text{ W/m.}^{\circ}\text{C}$, $\rho = 867 \text{ kg/m}^3$, $\mu = 0.06108$ kg/m.s, Pr = 1551) flows over a flat plate with a velocity of U_{∞} = 2.5 m/s and temperature $T_{\infty} = 80$ °C. The plate is maintained at $T_s = 30$ °C. Dimensions are shown in the figure.

1) Determine if the flow is entirely laminar, entirely turbulent, or whether it transitions somewhere along the plate.

²⁾ Find the total rate of heat transfer per unit width from the *ThermoKool* to the plate.

Correlation	Geometry	Conditions
$Nu_x = 0,332. Re^{1/2}. Pr^{1/3}$	Flat plate	local, laminar ; $Pr \ge 0.6$
$Nu_L = 0,664. Re_L^{1/2}. Pr^{1/3}$		average, laminar ; $Pr \ge 0.6$
$Nu_x = 0,0296. Re^{0.8}. Pr^{1/3}$		local, turbulent ; $100 > Pr > 0.6$, $Re_x > 500\ 000$
$Nu_L = 0,037.Re_L^{0,8}.Pr^{1/3}$		average, turbulent ; $100 > Pr > 0.6$; $\text{Re}_{\text{L}} > 500\ 000$
$\overline{Nu_L} = (0,037.Re_L^{0.8} - 871).Pr^{1/3}$		average, mixed ; $100 > Pr > 0.6$, $Re_{x, cr} = 500\ 000$; Re_L
		$\leq 10^{8}$; 0,6 \leq Pr \leq 60

Problem 4 (10 points):

Consider a pipe of length L = 17 m, inner radius $r_1 = 15$ cm, outer radius $r_2 = 20$ cm, and thermal conductivity k = 14 W/m.K. Heat is generated in the pipe wall material uniformly at a rate of $(\dot{e}_{gen} = 4, 28, 10^6 (\frac{W}{m^3}))$. The inner and outer surfaces of the pipe are held at $T_1 = 60$ °C and $T_2 = 200$ °C, respectively. Obtain a general relation for the temperature distribution inside the pipe under steady conditions, and determine the temperature of the pipe wall at a radius of r = 17.5 cm.

CONSERVATION OF ENERGY EQUATION:

Cylindrical Coordinate System:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{e}_{\rm gen} = \rho C \frac{\partial T}{\partial t}$$

Air, 20°C

 $T_s = 400^{\circ} \text{C}$

D = 2.5 mm

L = 20 mm

