
 

MODULE I 
 

RADIATION HEAT TRANSFER 
Radiation 
 
Definition 
 

Radiation, energy transfer across a system boundary due to a 
T, by the mechanism of photon emission or electromagnetic 
wave emission. 
 

 
Because the mechanism of transmission is photon emission, unlike 
conduction and convection, there need be no intermediate matter to enable 
transmission. 
 
 
 
 
 
 
The significance of this is that radiation will be the only mechanism for 
heat transfer whenever a vacuum is present. 
 
Electromagnetic Phenomena. 
We are well acquainted with a wide range of electromagnetic phenomena in 
modern life.  These phenomena are sometimes thought of as wave 
phenomena and are, consequently, often described in terms of 
electromagnetic wave length, .  Examples are given in terms of the wave 
distribution shown below: 
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One aspect of electromagnetic radiation is that the related topics are more 
closely associated with optics and electronics than with those normally 
found in mechanical engineering courses.  Nevertheless, these are widely 
encountered topics and the student is familiar with them through every day 
life experiences. 
 
From a viewpoint of previously studied topics students, particularly those 
with a background in mechanical or chemical engineering, will find the 
subject of Radiation Heat Transfer a little unusual.  The physics 
background differs fundamentally from that found in the areas of 
continuum mechanics.  Much of the related material is found in courses 
more closely identified with quantum physics or electrical engineering, i.e. 
Fields and Waves.  At this point, it is important for us to recognize that 
since the subject arises from a different area of physics, it will be important 
that we study these concepts with extra care.    
 



 

Stefan-Boltzman Law 
     Both Stefan and Boltzman were physicists; any student taking a course 
in quantum physics will become well acquainted with Boltzman’s work as 
he made a number of important contributions to the field.  Both were 
contemporaries of Einstein so we see that the subject is of fairly recent 
vintage.  (Recall that the basic equation for convection heat transfer is 
attributed to Newton.) 
 

Eb = Tabs
4 

 
where: Eb = Emissive Power, the gross energy emitted from an 

ideal surface per unit area, time.  

  = Stefan Boltzman constant, 5.6710-8 W/m2K4 

 Tabs = Absolute temperature of the emitting surface, K. 
 

Take particular note of the fact that absolute temperatures are used in 
Radiation.  It is suggested, as a matter of good practice, to convert all 
temperatures to the absolute scale as an initial step in all radiation 
problems. 
 

You will notice that the equation does not include any heat flux term, q”.  
Instead we have a term the emissive power.  The relationship between these 
terms is as follows.  Consider two infinite plane surfaces, both facing one 
another.  Both surfaces are ideal surfaces.  One surface is found to be at 
temperature, T1, the other at temperature, T2.  Since both temperatures are 
at temperatures above absolute zero, both will radiate energy as described 
by the Stefan-Boltzman law.  The heat flux will be the net radiant flow as 
given by: 
 

q" = Eb1 - Eb2 = T1
4 - T2

4  
 

Plank’s Law 
 While the Stefan-Boltzman law is useful for studying overall energy 
emissions, it does not allow us to treat those interactions, which deal 
specifically with wavelength, .  This problem was overcome by another of 
the modern physicists, Max Plank, who developed a relationship for wave-
based emissions. 



 

Eb = () 
 

We plot a suitable functional relationship below: 
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We haven’t yet defined the Monochromatic Emissive Power, Eb. An 
implicit definition is provided by the following equation: 
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We may view this equation graphically as follows: 
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A definition of monochromatic Emissive Power would be obtained by 
differentiating the integral equation: 
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The actual form of Plank’s law is: 
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where: C1 = 2hco

2 =  3.742108 Wm4/m2 
  C2 = hco/k = 1.439104 mK 
   
Where: h, co, k are all parameters from quantum physics.  We need 

not worry about their precise definition here. 
 
This equation may be solved at any T,  to give the value of the 
monochromatic emissivity at that condition.  Alternatively, the function 
may be substituted into the integral to find the Emissive 
power for any temperature.  While performing this integral by hand is 
difficult, students may readily evaluate the integral through one of several 
computer programs, i.e. MathCad, Maple, Mathmatica, etc. 
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Emission Over Specific Wave Length Bands 
Consider the problem of designing a tanning machine.  As a part of the 
machine, we will need to design a very powerful incandescent light source.  
We may wish to know how much energy is being emitted over the 
ultraviolet band (10-4 to 0.4 m), known to be particularly dangerous. 
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With a computer available, evaluation of this integral is rather trivial.  
Alternatively, the text books provide a table of integrals. The format used is 
as follows: 
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Referring to such tables, we see the last two functions listed in the second 
column.  In the first column is a parameter, T.  This is found by taking the 
product of the absolute temperature of the emitting surface, T, and the 
upper limit wave length, .  In our example, suppose that the incandescent 
bulb is designed to operate at a temperature of 2000K.  Reading from the 
table: 
 

., m T, K T, mK F(0) 
0.0001 2000 0.2 0 

0.4 2000 600 0.000014 
F(0.40.0001m) = F(00.4m)- F(00.0001m)  0.000014 
 
This is the fraction of the total energy emitted which falls within the IR 
band.  To find the absolute energy emitted multiply this value times the 
total energy emitted: 
 

EbIR = F(0.40.0001m)T4 = 0.0000145.6710-820004 = 12.7 W/m2 
 
 
Solar Radiation 
 
The magnitude of the energy leaving the Sun varies with time and is closely 
associated with such factors as solar flares and sunspots.  Nevertheless, we 
often choose to work with an average value.  The energy leaving the sun is 
emitted outward in all directions so that at any particular distance from the 
Sun we may imagine the energy being dispersed over an imaginary 
spherical area.  Because this area increases with the distance squared, the 
solar flux also decreases with the distance squared.  At the average distance 
between Earth and Sun this heat flux is 1353 W/m2, so that the average heat 
flux on any object in Earth orbit is found as: 



 

Gs,o = Sc·f·cos θ 
 

 Where Sc = Solar Constant, 1353 W/m2 
  f = correction factor for eccentricity in Earth Orbit, 

(0.97<f<1.03) 
  θ  = Angle of surface from normal to Sun. 
 
Because of reflection and absorption in the Earth’s atmosphere, this number 
is significantly reduced at ground level.  Nevertheless, this value gives us 
some opportunity to estimate the potential for using solar energy, such as in 
photovoltaic cells.  

 
 
Some Definitions 
 
In the previous section we introduced the Stefan-Boltzman Equation to 
describe radiation from an ideal surface. 
 

Eb = σ·Tabs
4 

 
This equation provides a method of determining the total energy leaving a 
surface, but gives no indication of the direction in which it travels.  As we 
continue our study, we will want to be able to calculate how heat is 
distributed among various objects. 
 
For this purpose, we will introduce the radiation intensity, I, defined as the 
energy emitted per unit area, per unit time, per unit solid angle. Before 
writing an equation for this new property, we will need to define some of 
the terms we will be using. 
 
Angles and Arc Length 
 
We are well accustomed to 
thinking of an angle as a two 
dimensional object.  It may be 
used to find an arc length: 

α 
L = r·α 

L 

 



 

 
 
Solid Angle 
 
We generalize the idea of an 
angle and an arc length to three 
dimensions and define a solid 
angle, Ω, which like the standard 
angle has no dimensions.  The 
solid angle, when multiplied by 
the radius squared will have 
dimensions of length squared, or area, and will have the magnitude of the 
encompassed area. 

A = r2·dΩ 

r 

 
Projected Area 
 
The area, dA1, as seen from the 
prospective of a viewer, situated at an 
angle θ from the normal to the 
surface, will appear somewhat 
smaller, as cos θ·dA1.  This smaller 
area is termed the projected area. 
 

Aprojected = cos θ·Anormal 
 
Intensity 
 
The ideal intensity, Ib, may now be defined as the energy emitted from an 
ideal body, per unit projected area, per unit time, per unit solid angle. 
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Spherical Geometry 
 
Since any surface will emit radiation outward in all directions above the 
surface, the spherical coordinate system provides a convenient tool for 
analysis.  The three basic 
coordinates shown are R, φ, and θ, 
representing the radial, azimuthal 
and zenith directions.   
 
In general dA1 will correspond to 
the emitting surface or the source.  
The surface dA2 will correspond to 
the receiving surface or the target.  
Note that the area proscribed on the 
hemisphere, dA2, may be written as: φ 

R·sin θ 

R 
θ 

dA1 

dA2 

Δφ 
 

 
][])sin[(2  dRdRdA   

or, more simply as: 

]sin2
2  ddRdA   

Recalling the definition of the solid angle,  
 

dA = R2·dΩ 
we find that: 

dΩ = R2·sin θ·dθ·dφ 
 

Real Surfaces 
 
Thus far we have spoken of ideal surfaces, i.e. those that emit energy 
according to the Stefan-Boltzman law: 
 

Eb = σ·Tabs
4 



 

Real surfaces have emissive powers, E, which are somewhat less than that 
obtained theoretically by Boltzman.  To account for this reduction, we 
introduce the emissivity, ε. 
 

bE

E
   

so that the emissive power from any real surface is given by: 
 

E = ε·σ·Tabs
4 

 
 
Receiving Properties 
 
Targets receive radiation in 
one of three ways; they 
absorption, reflection or 
transmission.  To account for 
these characteristics, we 
introduce three additional 
properties: 
 

 Absorptivity, α,  the 
fraction of incident 
radiation absorbed. 

Transmitted 
Radiation 

Absorbed 
Radiation 

Incident 
Radiation, 
G 

Reflected 
Radiation 

 Reflectivity, ρ, the fraction of incident radiation reflected. 

 Transmissivity, τ, the fraction of incident radiation transmitted. 

 
We see, from Conservation of Energy, that: 

α + ρ + τ  = 1 

In this course, we will deal with only opaque surfaces, τ = 0, so that: 

Opaque Surfaces α + ρ = 1 



 

Relationship Between Absorptivity,α, and Emissivity,ε 

Consider two flat, infinite planes, surface A and 
surface B, both emitting radiation toward one 
another.  Surface B is assumed to be an ideal 
emitter, i.e. εB = 1.0.  Surface A will emit 
radiation according to the Stefan-Boltzman law 
as: 
 
 EA = εA·σ·TA

4     

and will receive radiation as: 

 GA  = αA·σ·TB
4

 

The net heat flow from surface A will be: 

q΄΄ = εA·σ·TA
4 - αA·σ·TB

4 

Now suppose that the two surfaces are at exactly the same temperature.  
The heat flow must be zero according to the 2nd law.  If follows then that: 
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Because of this close relation between emissivity, ε, and absorptivity, α, 
only one property is normally measured and this value may be used 
alternatively for either property. 
 
Let’s not lose sight of the fact that, as thermodynamic properties of the 
material, α and ε may depend on temperature.  In general, this will be the 
case as radiative properties will depend on wavelength, λ.  The wave length 
of radiation will, in turn, depend on the temperature of the source of 
radiation.   
 
The emissivity, ε, of surface A will depend on the material of which surface 
A is composed, i.e. aluminum, brass, steel, etc. and on the temperature of 
surface A. 
 



 

The absorptivity, α, of surface A will depend on the material of which 
surface A is composed, i.e. aluminum, brass, steel, etc. and on the 
temperature of surface B. 
 
In the design of solar collectors, engineers have long sought a material 
which would absorb all solar radiation, (α = 1, Tsun ~ 5600K) but would not 
re-radiate energy as it came to temperature (ε << 1, Tcollector ~ 400K).  
NASA developed an anodized chrome, commonly called “black chrome” as 
a result of this research. 
 
Black Surfaces 
Within the visual band of radiation, any material, which absorbs all visible 
light, appears as black.  Extending this concept to the much broader thermal 
band, we speak of surfaces with α = 1 as also being “black” or “thermally 
black”.  It follows that for such a surface, ε = 1 and the surface will behave 
as an ideal emitter.  The terms ideal surface and black surface are used 
interchangeably. 
 
Lambert’s Cosine Law: 
A surface is said to obey Lambert’s cosine law if the intensity, I, is uniform 
in all directions.   This is an idealization of real surfaces as seen by the 
emissivity at different zenith angles: 
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The sketches shown are intended to show is that metals typically have a 
very low emissivity, ε, which also remain nearly constant, expect at very 
high zenith angles, θ.  Conversely, non-metals will have a relatively high 
emissivity, ε, except at very high zenith angles.  Treating the emissivity as a 
constant over all angles is generally a good approximation and greatly 
simplifies engineering calculations.  
 
Relationship Between Emissive Power and Intensity 
 
By definition of the two terms, emissive power for an ideal surface, Eb, and 
intensity for an ideal surface, Ib. 
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Replacing the solid angle by its equivalent in spherical angles: 
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Integrate once, holding Ib constant: 
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Integrate a second time.  (Note that the derivative of sin θ is cos θ·dθ.) 
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Eb = π·Ib 

 
 
 
 



 

Radiation Exchange 
 
During the previous lecture we introduced the intensity, I, to describe 
radiation within a particular solid angle. 
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This will now be used to determine the fraction of radiation leaving a given 
surface and striking a second surface. 
 
Rearranging the above equation to express the heat radiated: 
 

 ddAIdq 1cos  
 

Next we will project the receiving surface onto the hemisphere surrounding 
the source.    First find the projected area of surface dA2, dA2·cos θ2.  (θ2 is 
the angle between the normal to surface 2 and the position vector, R.)   
Then find the solid angle, Ω, which encompasses this area. dA2 

 
Substituting into the heat flow 
equation above: 
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To obtain the entire heat transferred 
from a finite area, dA1, to a finite 
area, dA2, we integrate over both 
surfaces: 

dA2·cos θ2 
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To express the total energy emitted from surface 1, we recall the relation 
between emissive power, E, and intensity, I. 
 



 

qemitted =  E1·A1 = π·I1·A1 

 
View Factors-Integral Method 
 
Define the view factor, F1-2, as the fraction of energy emitted from surface 
1, which directly strikes surface 2. 
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after algebraic simplification this becomes: 
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Example Consider a diffuse 
circular disk of diameter D and 
area Aj and a plane diffuse 
surface of area Ai << Aj.  The 
surfaces are parallel, and Ai is 
located at a distance L from the 
center of Aj.  Obtain an 
expression for the view factor Fij. 
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The view factor may be obtained from: 
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Since dAi is a differential area 
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Substituting for the cosines and the differential area: 
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After simplifying: 
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Let ρ2  L2 + r2 = R2.  Then 2·ρ·dρ = 2·r·dr. 
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After integrating, 
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Substituting the upper & lower limits 
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This is but one example of how the view factor may be evaluated using the 
integral method.  The approach used here is conceptually quite straight 
forward; evaluating the integrals and algebraically simplifying the resulting 
equations can be quite lengthy. 
 
Enclosures 
In order that we might apply conservation of energy to the radiation 
process, we must account for all energy leaving a surface.  We imagine that 
the surrounding surfaces act as an enclosure about the heat source which 
receive all emitted energy.  Should there be an opening in this enclosure 
through which energy might be lost, we place an imaginary surface across 
this opening to intercept this portion of the emitted energy.  For an N 
surfaced enclosure, we can then see that: 
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This relationship is  
known as the 

“Conservation Rule”.

 
Example:  Consider the previous problem of a small disk radiating to a 
larger disk placed directly above at a distance L.      
 
 
 
 
 
 
 
 
 
From our conservation rule we have: 
 

The view factor was shown to be 
given by the relationship: 2 
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Here, in order to provide an 
enclosure, we will define an 
imaginary surface 3, a truncated 
cone intersecting circles 1 and 2. 
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Since surface 1 is not convex F1,1 = 0.  Then: 
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Reciprocity 
 
We may write the view factor from surface i to surface j as: 
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Similarly, between surfaces j and i: 
 

  


 
j iA A

ijij
ijj R

dAdA
FA

2

coscos




 

 
Comparing the integrals we see that they are identical so that: 
 

ijjjii FAFA    
 
 

This relationship 
is known as 

“Reciprocity”.



 

Example:  Consider two concentric spheres shown to the 
right.  All  radiation leaving the outside of surface 1 
will strike surface 2.  Part of the radiant energy leaving 
the inside surface of object 2 will strike surface 1, part 
will return to surface 2.  To find the fraction of energy 
leaving surface 2 which strikes surface 1, we apply reciprocity: 
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Associative Rule 
 
Consider the set of surfaces shown to the right:  Clearly, 
from conservation of energy, the fraction of energy 
leaving surface i and striking the combined surface j+k 
will equal the fraction of energy emitted from i and 
striking j plus the fraction leaving surface i and 
striking k.   
 

kijikji FFF  )(  
 
 
 
Radiosity 
 
We have developed the concept of intensity, I, which let to the concept of 
the view factor.  We have discussed various methods of finding view 
factors.  There remains one additional concept to introduce before we can 
consider the solution of radiation problems. 
 
Radiosity, J, is defined as the total energy leaving a surface per unit area 
and per unit time.  This may initially sound much like the definition of 
emissive power, but the sketch below will help to clarify the concept. 
 
 
 
 

1           2 

    i 

       j     
 k 

This relationship is 
known as the 

“Associative Rule”.



 

   ε·Eb        ρ·G               G 
J ≡ ε·Eb + ρ·G 

 
 
 
Net Exchange Between Surfaces 
 
Consider the two surfaces shown.  Radiation will travel from surface i to 
surface j and will also travel from j to i.   
 

qi→j = Ji·Ai· Fi→j   Jj 
  

likewise,  
qj→i = Jj·Aj· Fj→j Ji 

 
The net heat transfer is then: 
 

qj→i (net) = Ji·Ai· Fi→j - Jj·Aj· Fj→j 
 

From reciprocity we note that F1→2·A1 = F2→1·A2 so that 
 

qj→i (net) = Ji·Ai· Fi→j - Jj· Ai· Fi→j = Ai· Fi→j·(Ji – Jj) 
 
 
Net Energy Leaving a Surface 
 
The net energy leaving a surface will be 
the difference between the energy leaving 
a surface and the energy received by a 
surface: 

  ε·Eb        ρ·G               G 

 
q1→ = [ε·Eb – α·G]·A1 

 
Combine this relationship with the definition of Radiosity to eliminate G. 
 

J ≡ ε·Eb + ρ·G   G = [J - ε·Eb]/ρ 
 



 

q1→ = {ε·Eb – α·[J - ε·Eb]/ρ}·A1 

 
Assume opaque surfaces so that α + ρ = 1  ρ = 1 – α, and substitute for ρ. 

q1→ = {ε·Eb – α·[J - ε·Eb]/(1 – α)}·A1 

 
Put the equation over a common denominator: 
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If we assume that α = ε then the equation reduces to: 
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Electrical Analogy for Radiation 
We may develop an electrical analogy for radiation, similar to that 
produced for conduction.  The two analogies should not be mixed:  they 
have different dimensions on the potential differences, resistance and 
current flows. 
 
 Equivalent 

Current 
Equivalent 
Resistance 

Potential 
Difference 

Ohms Law I R ΔV 
Net Energy 

Leaving Surface q1→ 








A
1

 Eb - J 

Net Exchange 
Between 
Surfaces 

qi→j 
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 J1 – J2 

 
 
 
 
 
 
 
 



 

  

 Count the number of surfaces.  (A surface must be at a “uniform” 

 factor resistances, 1/Ai·Fi→j. 
 

Alternate Procedure for Developing Networks 
 

temperature and have uniform properties, i.e. ε, α, ρ.) 
 Draw a radiosity node for each surface. 
 Connect the Radiosity nodes using view
 Connect each Radiosity node to a grounded battery, through a surface

resistance,  A



1 . 

 
This procedure should lead to exactly the same circuit as we obtain 

implifications to the Electrical Network 

 Insulated surfaces.  In steady state heat transfer, a surface cannot 

lectrically cannot flow 
ot grounded. 

urface 3 is not grounded so that the battery and surface 
wing.   

 
 lack surfaces:  A black, or ideal surface, will have no surface 

previously.   
 
 
S
 

receive net energy if it 
is insulated.  Because 
the energy cannot be 
stored by a surface in 
steady state, all energy 
must be re-radiated 
back into the enclosure. 
Insulated surfaces are 
often termed as re-
radiating surfaces. 
 
E
through a battery if it is n

 
S
resistance serve no purpose and are removed from the dra

B
resistance: 

       R3      
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In this case the nodal Radiosity and emissive power will be equal. 
 
This result gives some insight into the physical meaning of a black 
surface.  Ideal surfaces radiate at the maximum possible level.  Non-
black surfaces will have a reduced potential, somewhat like a battery 
with a corroded terminal.  They therefore have a reduced potential to 
cause heat/current flow. 
 

 Large surfaces:  Surfaces having a large surface area will behave as 
black surfaces, irrespective of the actual surface properties: 
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Physically, this corresponds to the characteristic of large surfaces that as 
they reflect energy, there is very little chance that energy will strike the 
smaller surfaces; most of the energy is reflected back to another part of 
the same large surface.  After several partial absorptions most of the 
energy received is absorbed. 

 
Solution of Analogous Electrical Circuits. 
 

 Large Enclosures 
 

Consider the case of an object, 1, placed inside a large enclosure, 2.  
The system will consist of two objects, so we proceed to construct a 
circuit with two radiosity nodes. 

 
 1/(A1F1→2) 
 J1                       J2     
 

Now we ground both Radiosity nodes through a surface 
resistance.  

 
1/(A1F1→2) 

J                       J1  2     



 

 
(1-1)/(1A1) (1-

 
 
 
 
 
 
 
 

Since A2 is large, R2 = 0.  The view factor, F1→2 = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sum the series resistances: 
 

RSeries = (1-1)/(1A1) + 1/A1 =  1/(1A1) 
 

Ohm’s law: 
 

i = V/R 
or by analogy: 

q =  Eb/RSeries = 1A1(T1
4 – T2

4) 
 

You may recall this result from Thermo I, where it was 
introduced to solve this type of radiation problem. 

 Networks with Multiple Potentials 
 

 

Eb1 T1
4 

 

Eb2 T2
4 

2)/( A2) 2

     R1                        R12                     R2 

(1-1)/(1A1) 1/(A1F1→2) 
J1                       J2     

  

Eb1 T1
4      R1                        R12     Eb2 T2

4 



 

Systems with 3 or more 
grounded potentials 
will require a slightly 
different solution, but 
one which students 
have previously 
encountered in the 
Circuits course. 

J2                                            J3 
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        R12                         R13 

 
The procedure will be to 
apply Kirchoff’s law to each 
of the Radiosity junctions.   
 

0
3

1


i

iq  

 
In this example there are three junctions, so we will obtain three 
equations.  This will allow us to solve for three unknowns. 

 
Radiation problems will generally be presented on one of two ways: 
 

o The surface net heat flow is given and the surface temperature is 
to be found. 

o The surface temperature is given and the net heat flow is to be 
found. 

 
Returning for a moment to the coal grate furnace, let us assume that 
we know (a) the total heat being produced by the coal bed, (b) the 
temperatures of the water walls and (c) the temperature of the super 
heater sections.   

 
Apply Kirchoff’s law about node 1, for the coal bed: 
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Similarly, for node 2: 

Eb1       
 

 

                    J1     

Eb3       
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(Note how node 1, with a specified heat input, is handled differently 
than node 2, with a specified temperature. 
 

And for node 3: 
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The three equations must be solved simultaneously.  Since they 
are each linear in J, matrix methods may be used: 
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The matrix may be solved for the individual Radiosity.  Once 
these are known, we return to the electrical analogy to find the 
temperature of surface 1, and the heat flows to surfaces 2 and 3. 

 
 
 

Surface 1:  Find the coal bed temperature, given the heat flow: 
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Surface 2:  Find the water wall heat input, given the water wall 
temperature: 
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Surface 3:  (Similar to surface 2) Find the water wall heat input, 
given the water wall temperature: 
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