Tutorial Two

| Introduction to conduction|

Exercise 2.1

Fourier's Law

Consider steady-state conditions for one-dimensional conduction in a plane wall having a thermal conductivity $\mathbf{k} = 50 \text{ W/m.K}$ and a thickness $\mathbf{L} = 0.35 \text{ m}$, with no internal heat generation.

Determine the heat flux and the unknown quantity for each case and sketch the temperature distribution, indicating the direction of the heat flux.

Case	T ₁ (°C)	T ₂ (°C)	dT/dx (K/m)
1	50	-20	
2	-30	-10	
3	70		160
4		40	-80
5		30	200

Exercise 2.2

In the two-dimensional body illustrated, the gradient at surface A is found to be $\partial T/\partial y$ = 30 K/m. What are $\partial T/\partial y$ and $\partial T/\partial x$ at surface B?

For the case where the thermal conductivity varies with temperature as $\mathbf{k} = \mathbf{k}_0 + \mathbf{aT}$, where $\mathbf{k}_0 = \mathbf{10} \text{ W/m.K}$, $\mathbf{a} = -\mathbf{10}^{-3} \text{ W/m.K}^2$, and T is in kelvins. The gradient at surface **B** is $\partial \mathbf{T}/\partial \mathbf{x} = \mathbf{30} \text{ K/m}$. What is $\partial \mathbf{T}/\partial \mathbf{y}$ at surface **A**?

Dr. BOUTI .M

Exercise 2.3

Assume steady-state, one-dimensional heat conduction through the symmetric shape shown.

Assuming that there is no internal heat generation, derive an expression for the thermal conductivity k(x) for these conditions: A(x) = (1 - x), $T(x) = 300(1 - 2x - x^3)$, and q = 6000 W, where A is in square meters, T in kelvins, and x in meters.

Exercise 2.4 Thermophysical Properties

Consider a **300 mm x 300 mm** window in an aircraft. For a temperature difference of **80 °C** from the inner to the outer surface of the window, calculate the heat loss through **L** = **10-mm-thick** polycarbonate, soda lime glass, and aerogel windows, respectively.

Material	Thermal conductivity	unit
Polycarbonate (k _{pc})	0,21	
Soda lime glass (k _{slg})	1,4	(W/m.K)
Aerogel (k _{ag})	0,014	

If the aircraft has **130 windows** and the cost to heat the cabin air is **£1/kW.h**, compare the costs associated with the heat loss through the windows for an **8-hour** intercontinental flight.

Exercise 2.5

Test your understanding of various concepts by addressing the following questions:

- 1- An important property of matter is defined by *Fourier's law*. What is it? What is its physical significance? What are its units?
- 2- What is an isotropic material?
- 3- Why is the thermal conductivity of a solid generally larger than that of a liquid? Why is the thermal conductivity of a liquid larger than that of a gas?