
1ère
Algorithmique et structures de données 2 Travaux pratiques Année informatique

1

1. Introduction :

TP 1 : subprograms (functions and procedures)

 Subprograms allow programs to be divided into modules to facilitate understanding and maintenance and also for avoid the repetitions in the code.

 As we has seen in course, he exist two types of subprograms: procedures and functions.

 Contrary to in algorithmic, the C++ language generalizes the structure of the function on the two types of subprograms. In other words, in C++ we have

only functions, procedure are specialisation of function

 For that, we go to start by the study of functions in C++, then next we will see the structure of the procedures.

2. Functions:

The general structure of a function in language C++ is as follows:

function_return_type function_name (type_1 _variable1 , type_2 variable2, typeN variableN)

{

< Declaration of the function variables >

<instructions1>;

<instructions2>;

...

return (result); /* For return the result */

}

Example :

An algorithm who read three numbers positive not null (A, B and C), calculate and display the following sum: A! + B! + C!

1ère
Algorithmique et structures de données 2 Travaux pratiques Année informatique

2

Language Algorithmic Language
C++

Algorithm Example #include _ <iostream> _ _

A ,B,C , Sum: whole using namespace std ;

/* Definition of there function factorial */
Function Factorial (N: integer): integer
 fact , i : integer

/* Definition of there function factorial */

int Factorial (int N)
{

Begin int fact , i ;

fact ← 1; fact =1;

For i N to 1 DO for (i=N; i>=1; i= i-1)

 fact ← facts * i ; {

END For ;

 Return (fact) ;
END

fact = fact * i;
}

return (fact);
}

/* Program main */
Begin

/* M ain p r o g r a m m e n () * / _ _ _ _ _ _ _

Read (A ,B,C) ; int main ()

Sum ← Factorial(A) + Factorial(B) + Factorial(C) ; { int A, B, C, Sum;

Write(Sum) ; cin >>A>>B>>C;

END.
Sum = Factorial(A) + Factorial(B) + Factorial(C);
cout << Sum ;

 getchar ();

 return 0;

 }

Exercise 1:

Write a C++ program that will read three numbers positive not null (A, B and C) and then calculate and display the following sum: A! + B
c
. You must

define a function to calculate B
c
.

1ère
Algorithmique et structures de données 2 Travaux pratiques Année informatique

3

3. Procedures:

A procedure in C++ is represented by a function with a type void (Nothing). The exit parameters of procedures are passed by reference in C++ (pass by

variable) using the operator ' & ' (The & operator is equivalent to Var in algorithmics).

Example 1 : A program that display the sum and the product of two number whole HAS And b.

Language Algorithmic Language
C++

Algorithm Example1

A ,B, Sum, Product: whole

/* Definition of there procedure Calculation */

procedure Calculate (X1, X2:integers; var S,P: integer)

Beginning

S ← X1 + X2;

P ← X1 * X2;
END ;

/* Main Program */
Begin

Read (A ,B);

calculate (A,B,Sum,Product);

 Write(Sum, Product) ;

END.

#include <iostream> _ _
using namespace std ;

/* Definition of the procedure Calculate */

void calculation (int X1, int X2, int & S, int & P)
{

 S = X1 +X2;

 P = X1 *X2;
Pass by reference

}

/* M ain p r o g r a m m e n () * / _ _

int main ()

{ int A,B, Sum, Product;

cin >>A>>B>>C;

calculate (A,B, Sum, Product);

cost << Sum << Product;
getchar ();

return 0;

}

Exercise 2:

Write a C++ program that performs the permutation of two variables A and b using a procedure.

4. Reuse of subprogram

We can put the main program, functions and procedures in separated files, which allow several programs to reuse a same subprogram.

For example we can put the main program in the file '' TP.cpp '' and the factorial subprogram in the file '' functions_tp.cpp '' as follows:

File ''TP.cpp'' File ''functions_tp.cpp''

#include <iostream> _
#include ''functions_tp.cpp''

/* Definition of there function factorial */

int Factorial (int NOT)
using namespace std ;

For indicate or find this there function Factorial {

int Result , fact , i ;

/* M ain p r o g r a m m e n () * / _ _ _ _ _ _ _

int hand ()

{ int ABC, Sum;

fact =1;
for (i=N; i>=1; i= i-1)
{
fact = fact * i;

cin >>A>>B>>C; }

Sum = Factorial(A) + Factorial(B) + Factorial(C); Result = fact ;

cost << Sum ; return (Result);
getchar (); }

return 0;

}

Noticed :

You must put the files '' TP.cpp '' and '' functions_tp.cpp '' in the same directory before the compilation of the ''TP.cpp'' program.

Exercise 3 (Home Work): consider the exercise number 4 of the first series of Directed Work (TD). Implement in C++ the algorithmic solution of this exercise.

We define a bi-prime number as being a prime number whose inverse (or mirror) is a prime number. For example the number 17 is bi-prime because

it is a prime number and its inverse 71 is also a prime number. We want to display all bi-prime numbers less than an integer A.

