
1ère 
Algorithmique et structures de données 2 Travaux pratiques Année informatique  

1 

 

 

 

 

 
1. Introduction : 

TP 1 : subprograms (functions and procedures) 

 Subprograms allow programs to be divided into modules to facilitate understanding and maintenance and also for avoid the repetitions in the code. 

 As we has seen in course, he exist two types of subprograms: procedures and functions. 

 Contrary to in algorithmic, the C++ language generalizes the structure of the function on the  two types of subprograms. In other words, in C++ we have 

only functions, procedure are specialisation of function 

 For that, we go to start by the study of functions in C++, then next we will see the structure of the procedures. 
 

2. Functions: 
 

The general structure of a function in language C++ is as follows: 

function_return_type function_name ( type_1 _variable1 , type_2 variable2, .... typeN variableN ) 

{ 

< Declaration of the function variables > 

<instructions1>; 

<instructions2>; 

... 

return (result); /* For return the result */ 

} 

 

Example : 
 

An algorithm who read three numbers positive not null (A, B and C), calculate and display the following sum: A! + B! + C! 



1ère 
Algorithmique et structures de données 2 Travaux pratiques Année informatique  

2 

 

 

 

Language Algorithmic Language 
C++ 

Algorithm Example #include _ <iostream> _ _ 

A ,B,C , Sum: whole using namespace std ; 
 

 

/* Definition of there function factorial */ 
Function Factorial (N: integer): integer 
  fact , i : integer 

/* Definition of there function factorial */ 

int Factorial ( int N) 
{ 

Begin int fact , i ; 

fact ← 1; fact =1; 

For i N to 1 DO for (i=N; i>=1; i= i-1) 

   fact ← facts * i ; { 

END For ;  

   Return ( fact ) ; 
END  

fact = fact * i; 
} 

return ( fact ); 
} 

/* Program main */ 
Begin 

--------------------------------------------- 
/* M ain p r o g r a m m e n ( ) * / _ _ _ _ _ _ _ 

Read (A ,B,C ) ; int main () 

Sum ← Factorial(A) + Factorial(B) + Factorial(C) ; { int A, B, C, Sum; 

Write(Sum) ; cin >>A>>B>>C; 

END. 
Sum = Factorial(A) + Factorial(B) + Factorial(C); 
cout << Sum ; 

 getchar ( ); 

 return 0; 

 } 

Exercise 1: 
 

Write a C++ program that will read three numbers positive not null (A, B and C) and then calculate and display the following sum: A! + B 
c
. You must 

define a function to calculate B 
c
.



1ère 
Algorithmique et structures de données 2 Travaux pratiques Année informatique  

3 

 

 

3. Procedures: 

A procedure in C++ is represented by a function with a type void (Nothing). The exit parameters of procedures are passed by reference in C++ (pass by 

variable) using the operator ' & ' ( The & operator is equivalent to Var in algorithmics). 

Example 1 : A program that display the sum and the product of two number whole HAS And b. 
 

Language Algorithmic Language 
C++ 

Algorithm Example1 

A ,B, Sum, Product: whole 
 

 

/* Definition of there procedure Calculation */ 

procedure Calculate ( X1, X2:integers; var  S,P: integer)  

Beginning 

S ← X1 + X2; 

P ← X1 * X2; 
END ; 

 
 

/* Main Program */ 
Begin 

Read (A ,B );  

calculate ( A,B,Sum,Product); 

 Write(Sum, Product) ; 

END. 

#include <iostream> _ _ 
using namespace std ; 

 
 

/* Definition of the procedure Calculate */ 

void calculation ( int X1, int X2, int & S, int & P) 
{ 

   
   S = X1 +X2; 

   P = X1 *X2;  
Pass by reference 

 
} 

 
 

/* M ain p r o g r a m m e n ( ) * / _ _ 

int main () 

{ int A,B, Sum, Product; 

cin >>A>>B>>C; 

calculate (A,B, Sum, Product); 

cost << Sum << Product; 
getchar (); 

return 0; 

} 

Exercise 2: 
 

Write a C++ program that performs the permutation of two variables A and b using a procedure. 



 

 

4. Reuse of subprogram 
 

We can put the main program, functions and procedures in separated files, which allow several programs to reuse a same subprogram. 

 

For example we can put the main program in the file '' TP.cpp '' and the factorial subprogram in the file '' functions_tp.cpp '' as follows: 

 

File ''TP.cpp'' File ''functions_tp.cpp'' 

#include <iostream> _ 
#include ''functions_tp.cpp'' 

/* Definition of there function factorial */ 

int Factorial ( int NOT) 
using namespace std ; 

For indicate or find this there function Factorial { 

int Result , fact , i ; 
 

/* M ain p r o g r a m m e n ( ) * / _ _ _ _ _ _ _ 

int hand () 

{ int ABC, Sum; 

fact =1; 
for (i=N; i>=1; i= i-1) 
{ 
fact = fact * i; 

cin >>A>>B>>C; } 

Sum = Factorial(A) + Factorial(B) + Factorial(C); Result = fact ; 

cost << Sum ; return ( Result ); 
getchar ( ); } 

return 0;  

}  

Noticed : 
 

You must put the files '' TP.cpp '' and '' functions_tp.cpp '' in the same directory before the compilation of the ''TP.cpp'' program. 
 

Exercise 3 (Home Work): consider the exercise number 4 of the first series of Directed Work (TD). Implement in C++ the algorithmic solution of this exercise. 

 

We define a bi-prime number as being a prime number whose inverse (or mirror) is a prime number. For example the number 17 is bi-prime because 

it is a prime number and its inverse 71 is also a prime number. We want to display all bi-prime numbers less than an integer A. 

 

 



 

 

 

 


