Exercise 1

A porous membrane with a total pore surface area of $A = 0.05 \text{ m}^2$ separates two compartments containing *sucrose* at concentrations of 0,5 and 0,2 mol/L respectively. These concentrations are maintained constant during the diffusion of sucrose molecules through the membrane. The established steady state is assumed.

- What is the value of the flow rate?

<u>Given</u>: $D_{sucrose} = 8.10^{-10} \text{ m}^2/\text{s}$, $\varepsilon_{membrane} = 10 \ \mu\text{m}$.

Exercise 2

Let a porous membrane with a thickness e and a surface area of 50 cm2 separate two compartments.

At time (t = 0s), 2 liters of pure water are introduced into the first compartment and 2 liters of an aqueous solution with a solute concentration of 1 mole/L are introduced into the second compartment. If after 30 seconds the concentration in the first compartment is 10^{-6} mole/cm³,

- Determine the thickness (ϵ) of the membrane assuming that the concentration gradient remains linear within the thickness (ϵ). D = 5,344x10⁻⁵ cm²/s.