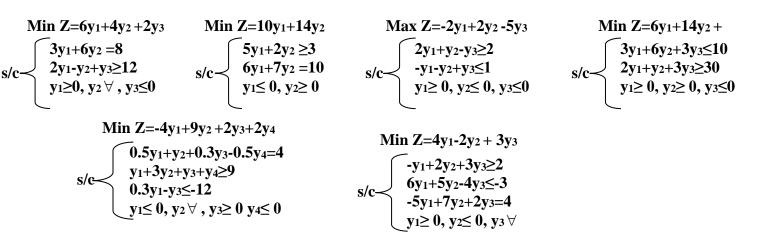
الحل النموذجي للسلسلة رقم 3

حل التمرين رقم 1:



حل التمرين رقم 2:

$$s/c = \begin{cases} Min \ Z=3x_1+7x_2+2x_3 \\ 4x_1+5x_2+x_3=29 \\ x_1+3x_2+2x_3 \ge 12 \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0 \\ x_1, \ x_3 \ entiers \end{cases}$$

جدول الحل الأساسي الرابع (الأمثل):

Ci	Xi	x_1	x_2	x_3	x_4^a	x_5^c	χ_6^a	b_{i}
3	x_1	1	1	0	2/7	1/7	-1/7	46/7
2	x_3	0	1	1	-1/7	-4/7	4/7	19/7
	C_{j}	3	7	2	M	0	M	
	Zj	3	5	2	4/7	-5/7	5/7	
	$\Delta_{ m j}$	0	2	0	M-4/7	5/7	M-5/7	Z=176/7

يُلاحظ أن قيمتي X_1 و X_3 قيمتهما ليستا صحيحتان وهو ما يتنافى مع شرط أن تكون قيمتهما صحيحتان.

يتم تطبيق طريقة غوموري كما يلي:

لدينا:

$$X_1 = 46/7 = 6.57$$

 $X_3 = 19/7 = 2.71$

بما أن قيمة المتغيرة X_3 تحتوي على أكبر قيمة عشرية فهي المتغيرة التي يتم إختيارها.

$$b_k = E_k + D_k$$
$$b_2 = E_2 + D_2$$

Ci	Xi	x_1	x_2	x_3	x_4^a	x_5^c	χ_6^a	X_7^c	b_{i}
3	x_1	1	1	0	2/7	1/7	-1/7	0	46/7
2	x_3	0	1	1	-1/7	-4/7	4/7	0	19/7
0	X_7^c	0	0	0	-6/7	-3/7	-4/7	1	-5/7
	C_{j}	3	7	2	M	0	M	0	
	Zj	3	5	2	4/7	-5/7	5/7	0	
	$\Delta_{ m j}$	0	2	0	M-4/7	5/7	M-5/7	0	Z=176/7
	Δ_{j}	_	_	-	_	-5/3	_	-	

Ci	Xi	x_1	x_2	x_3	x_4^a	x_5^c	x_6^a	X_7^c	b _i
3	x_1	1	1	0	0	0	-1/3	1/3	19/3
2	x_3	0	1	1	1	0	4/3	-4/3	11/3
0	X_5^c	0	0	0	2	1	4/3	-7/3	5/3
	C_{j}	3	7	2	M	0	M	0	
	Zj	3	5	2	2	0	5/3	-5/3	
	$\Delta_{ m j}$	0	2	0	M-2	0	M-5/3	5/3	Z=79/3

$$3 + \frac{2}{3} = X_3 + \left[X_2 + X_4^a + \left(\frac{4}{3}\right) X_6^a + \left(-\frac{4}{3}\right) X_7^c \right]$$

يُلاحظ أن الجدول هو جدول حل أمثل وممكن لكن قيمتي المتغيرتين X_1 و X_3 مازلتا غير صحيحتين لهذا نكرر تطبيق طريقة غوموري. لدينا:

$$X_1 = 19/3 = 6.33$$

 $X_2 = 11/3 = 3.66$

بما أن قيمة المتغيرة X_3 تحتوي على أكبر قيمة عشرية فهي المتغيرة التي يتم إختيارها.

$$b_{2} = E_{2} + D_{2}$$

$$\frac{11}{3} = 3 + \frac{2}{3}$$

$$b_{k} = X_{r} + \sum_{j=h}^{p} a_{kj} X_{j}$$

$$3 + \frac{2}{3} = X_{3} + \left[X_{2} + X_{4}^{a} + \left(\frac{4}{3}\right) X_{6}^{a} + \left(-\frac{4}{3}\right) X_{7}^{c}\right]$$

$$X_{3} = \left(3 + \frac{2}{3}\right) - \left[X_{2} + X_{4}^{a} + \left(\frac{4}{3}\right) X_{6}^{a} + \left(-\frac{4}{3}\right) X_{7}^{c}\right]$$

$$X_{3} = \left(3 + \frac{2}{3}\right) - \left[(1 + 0)X_{2} + (1 + 0)X_{4}^{a} + \left(0 + \frac{4}{3}\right) X_{6}^{a} + \left(-2 + \frac{2}{3}\right) X_{7}^{c}\right]$$

$$X_{3} = 3 + \frac{2}{3} - X_{2} - X_{4}^{a} - \frac{4}{3} X_{6}^{a} + 2X_{7}^{c} - \frac{2}{3} X_{7}^{c}$$

$$X_{3} = (3 - X_{2} - X_{4}^{a} + 2X_{7}^{c}) + \frac{2}{3} - \frac{4}{3} X_{6}^{a} - \frac{2}{3} X_{7}^{c}$$

$$\frac{2}{3} - \frac{4}{3} X_{6}^{a} - \frac{2}{3} X_{7}^{c} \le 0$$

ومنه فإن قيد غوموري يُكتب كما يلي:

$$-rac{4}{3}X_6^a - rac{2}{3}X_7^c \le -rac{2}{3}$$
 ويتم إضافة القيد الأخير إلى جدول الحل الأمثل كما يلي:
$$-rac{4}{3}X_6^a - rac{2}{3}X_7^c + X_8^c = -rac{2}{3}$$

Ci	Xi	x_1	x_2	x_3	x_4^a	x_5^c	x_6^a	X_7^c	<i>X</i> ^c ₈	b _i	
3	x_1	1	1	0	0	0	-1/3	1/3	0	19/3	
2	x_3	0	1	1	1	0	4/3	-4/3	0	11/3	
0	X_5^c	0	0	0	2	1	4/3	-7/3	0	5/3	
0	X_8^c	0	0	0	0	0	-4/3	-2/3	1	-2/3	صف الإرتكاز
	C _j	3	7	2	M	0	M	0	0		. J J _F
	Zj	3	5	2	2	0	5/3	-5/3	0		_
	$\Delta_{ m j}$	0	2	0	M-2	0	M-5/3	5/3	0	Z=79/3	
	$\Delta_{j/\chi_{i^*j}}$	-	-	-	-	-	-	-5/2	-		•

Ci	Xi	x_1	x_2	x_3	x_4^a	x_5^c	x_6^a	X_7^c	X_8^c	b _i
3	x_1	1	1	0	0	0	-1	0	1/2	6
2	x_3	0	1	1	1	0	4	0	-2	5
0	X_5^c	0	0	0	2	1	6	0	-7/2	4
0	X_7^c	0	0	0	0	0	2	1	-3/2	1
	C _j	3	7	2	M	0	M	0	0	
	Zj	3	5	2	2	0	5	0	-5/2	
	$\Delta_{ m j}$	0	2	0	M-2	0	M-5	0	5/2	Z=28

يُلاحظ أن الجدول هو جدول حل أمثل وممكن، وأن قيمتي X_1 و X_3 صحيحتان وهو ما يحقق الشرط المطلوب، ومنه فإن نقطة الحل الأمثل هي كما يلي:

$$X_1 = 6, X_2 = 0, X_3 = 5, X_5^c = 4, X_7^c = 1, X_8^c = 0, \text{ Min Z} = 28$$