Periodic classification

- I. Periodicity
 I.1. groups
 I.2. periods
 II. Periodic properties
 II.1. atomic radius
 II.2. ionization energy
 - II.3. electronegativity
- I. Periodicity

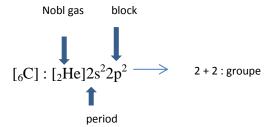
The periodic table is the most significant tool that chemists use for organizing and recalling chemical facts.

The arrangement of elements having same properties in the same group and separating them from elements with different properties is called classification of elements.

In the first attempt Mendeleev and Meyer arranged the elements in order of increasing atomic weight.

Modern periodic table is the result of the discovery of the atomic number by Moseley in 1914. in which the elements are arranged in order of their increasing atomic number. The elements having similar properties are repeated after regular intervals. The modern periodic table contains seven horizontal rows called periods and eighteen vertical columns called groups.

I.1. groups


The group number of a main-group element is equal to the number of valence electrons for that element.

I.2. periods

The row number of a main-group element is equal to the highest principal quantum number (n) for that element.

The elements in the long form of periodic table are classified into four blocks. They are s, p, d and f-block elements. The classification is based on the name of orbitals which receive the last electron. In which :

The A-groups comprise s- and p-elements, whereas the B-groups consist of d- and f-elements. Example :


```
© 2014 Pearson Education, Inc.
```

There are eighteen vertical columns known as groups in the modern periodic table which are arranged from left to right and seven horizontal rows which are known as periods.

column	outermos	block	Group number	Group	Property					
	t usb-			name						
	shells									
Column 1	ns ¹	S	Group	Alkali	They form strong					
			IA	metals	alkalis with water					
Column 2	ns ²	S	Group	Alkaline	They also form alkalis					
			IIA	earth	but weaker than group 1					
					elements					
Column 13	ns ² np ¹	р	Group	Boron	Boron is the first					
			IIIA	family	member of this family					
Column 14	ns ² np ²	Р	Group	Carbon	Carbon is the first					
			IVA	family	member of this property					
Column 15	ns ² np ³	р	Group	This group has non-						
			VA	family	metals and metalloids					
Column 16	ns ² np ⁴	р	Group	Oxygen	They are also known as					
			VIA	family	chalcogens					

Column 17	ns ² np ⁵	p	Group VIIA	Halogen	
				family	The elements of this
					group form salts.
Column 18	ns ² np ⁶	р	Group	Zero	They are noble gases
			VIIIA	group	and under normal
					conditions they are
					inert.
Columns 3	$ns^2(n-1)d^1$	d	IIIB, , , , ,	the	Important for living
Column 4	$ns^2(n-1)d^2$	d	IVB	transition	organisms(i.e. as minerals)
Column 5	$ns^2(n-1)d^3$	d	VB	elements	
Column 6	$ns^{1}(n-1)d^{5}$	d	VIB	-	
Columns 7	$ns^2(n-1)d^5$	d	VIIB	-	
Columns :	ns ² (n-	d	VIIIB	-	
8, 9 and 10	1) d^{6} ,				
	ns ² (n-				
	1) d^{7} ,				
	$ns^2(n-1)d^8$				
Column 11	ns ¹ (n-	d	IB	-	
	$1)d^{10}$				
Column 12	ns ² (n-	d	IIB	-	
	$1)d^{10}$				
Block f	$6s^24f^{1-14}$	f		Lanthanides	Part of the "inner transition
					metals"
					•Soft silvery metals
					• $Z = 57$ to 70
	$7s^25f^{1-14}$	f		Actinides	Radioactive elements
					•Part of the "inner transition
					metals"
					• $Z = 89$ to 102

Group ↓Peric		2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																		2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	* *	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
				57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
			* *	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

II. Periodic properties

Horizontal& vertical trends can be seen in the elements for:

- ✓ atomic radius
- ✓ ionization energy
- ✓ electronegativity

II.1. Atomic radius

GROUP TREND: Atomic radius increases as you move from **top to bottom** in a family. This is because major energy levels (1-7) are being filled with more and more electrons. The electrons get farther & farther from the nucleus.

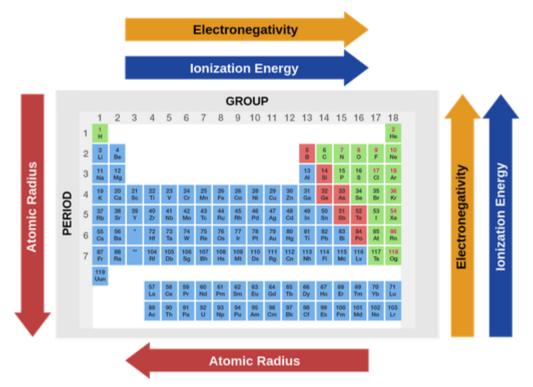
PERIOD TREND: Atomic radius generally decreases from **left to right** as atomic number increases. This is because extra electrons are entering the same level while the nucleus gets larger & more positive. This draws the electron cloud in towards the nucleus.

II.2. Ionization energy

Ionization energy is the energy needed to remove an electron from an atom.

GROUP TREND: In vertical groups, ionization energy decreases from **top to bottom**. This is because electrons are farther from the nucleus & filled levels cause a shielding effect.

SHIELDING EFFECT: Inner electrons shield outer electrons from the positive nucleus. This means outer electrons are not held as tightly.


PERIOD TREND: Ionization energy tends to increase as you move from **left to right** toward the noble gases. This is because metals tend to lose electrons & nonmetals tend to gain electrons. All of them want to as stable as the noble gases.

II.3. Electronegativity

Electronegativity is the measured tendency to attract an electron in a chemical bond.

GROUP TREND: Electronegativity decreases from the **top to bottom**. Smaller atoms have a shorter distance to the nucleus & less shielding effect.

PERIOD TREND: Electronegativity values increase as you go from **left to right**. Metals want to empty their sublevels so they lose electrons. Nonmetals want to gain electrons so they can be like the noble gases.

