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Chapter 4

Solving of first-order ordinary differential equations

4.1 Introduction:
An ordinary differential equation (ODE) is an equation relating a real variable and its
derivatives. The ODE is written in the following form:
. _dy
== =f(t,y(t 1
™ (ty(®) 1)
Where y is the unknown function, y is its derivative, and t is the real variable.

Exemple 1 :

L dy
Y=t

The solution of this equation can be determined analytically: it is given by:

y(t) = cet 3
There is an infinity of solutions to this differential equation due to the integration constant c.

y )

To determine the appropriate solution to our physical state, we must refer to the data already

known, generally specified via two categories of conditions or two categories of problems:
Initial conditions (Cauchy problem)

The initial condition gives the value of the function and its derivatives at a given time, called
the initial time. In another way, to find the values of the function at other points in the

domain, we must know the value of the function y and its derivatives in the initial state.

At an initial value t,, we have

y(to) = ¥o 4)
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Chapter 4 Solving of first-order ordinary differential equations

We can therefore evaluate the value of c via this initial condition. If we take y(0)=1 at t=0 in
the previous example (eq. 3), the value of ¢ will be equal to 1, and the final solution of the

differential equation will be given by:
y(t) = e (6)
> Condition aux limites (Probleme aux limites)

A boundary condition expresses the behavior (gives the values) of a function on the boundary
(border) of its area of definition
yr ™

In this course, we are only interested in the solution of ODEs in the Cauchy problem (that is,
if we know the initial condition).
Consider the following differential equation:

y(®) = f(t,y(®), t€[ty t7] (8)
With the initial condition (Cauchy problem), y(t,) = Y,
The above example (eq. 3) is very easy to solve analytically, but there are many ODEs that
cannot be solved analytically. In these cases, numerical analysis offers methods to find an
approximate solution.
The Cauchy problem is an evaluation problem; that is to say, from the initial condition, we
can evaluate the value of y, at t; = t, + At and evaluate the value of y, from y; and so on.

if y,+1 is only function of t,, et y,,, we say that we have ‘One step diagram’

Value found from y,,

) yn+1 %o
Yn

Value found from y,

I 1

Value initially given — y,

v

to ] tn thi1

Figure 4.1 : Diagram illustrating the scenario

-
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Chapter 4 Solving of first-order ordinary differential equations

4.2 Uniqueness of the solution
If we assume that, the function f is continuous for the two variables t and y and that f is
uniformly Lipschitzian for y, that is to say:

vielt, T} Vy,ety,eR3IL>0,[f(ty)-f(t,y,) <Ly, —Y,|

Therefore, the differential equation admits a unique solution y € CY([t,, T1).
e Question: The question that arises is: what is the method to estimate the value of y;
from y,?
e Response: The idea is based on linearization. That is, we assume that the curve
between the two points is a straight line.
o But,

/ ' Which direction leads to
"""" T i better evaluation? -

E of y? |

to t

Figure 4.2: Schematic presentation of the problem

e Reponses: Taylor expansion responses on this question and gives the direction that

better estimates the value of y; at t; = t, + At

The Taylor expansion is given by:

h%?d?t  h3d3t h*dit
Yn+1 = Yn+h LT T 2 0(R) (9)

Y = y(tn)

h=ty—ty
O(h®) : the error that can be made at this degree

Using this development, we can deduce the direction we must follow to find the best

estimation of y at t,,,.1) = t,, + At. We will clarify this idea in the following paragraphs.
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Chapter 4 Solving of first-order ordinary differential equations

4. 2 Euler's method

The first-order ordinary differential equation is given by:

y=2=f(t,y(®) (10)

Assume that only the first term of the Taylor expansion provides an acceptable evaluation of

the value of y, so,
dy
Yn+1 =Yn t+ ha (11)

Knowing that,

dy _
= fLy@)

Example:y ===y +¢t,

dy
dat

That means f(t,, y(¢,)) = yn + ty

% : represents the slope of f at the point (yy,, t,,)-

First order development of Taylor can be graphically represented in the figure 4.3.

................................................. : dy d :
i o , LN
i The direction of the slope at the point yo ; Thestopeat (o) =k =3= (%)
4 | provides a better estimation of y;. :
Y1 e e e e e i
& ¥, =Y +d
g 4=nd
Yo
P — A
o 1 !
—
to h t

Figure 4.3: schematic representation of Euler idea to evaluate the next solution.

v
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Chapter 4 Solving of first-order ordinary differential equations

Figure 4.4 represents a graphical explanation of Euler's idea of how to estimate the next value

from the known previous value.

1
! Real value ! ' Error of estimation
. \ H
Yi=Yot+ d

dy

d=h—=>

d dt

Yo A
s >

Figure 4. 4: The estimation solution of the second value from the first

With the same analysis, we obtain all ODE values in the study interval.

(Y1 =Y t hf(to,y0)
Y2 =y1 + hf(t,y1)

kyn =Yn1t+ hf(tn—l' yn—l)

Figure 4.5 gives a graphical representation of the approximate solution.

Y1) Unknown

Slope 2

Slope 1

Figure 4. 5: Graphical representation of Euler method
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Chapter 4 Solving of first-order ordinary differential equations

Notes:
1. Itisvery clear that the approximate value of y,,,; is better when h is small.

2. We can rewrite Euler's equation as:

Yn+1 = Yn T hak

k= f(twyn)
a=1
Example 4. 1
Taking the following differential equation
dy
e 7
y(0) =1

The exact solution (analytical solution) of this equation is given by,

y=e'

We want to find numerically the values of y (the solution to the differential equation) in the

interval t € [0, 4] with Euler's method in two cases; h=0.5 and h=0.1.

Yir1 =Yi + hf (£, y(£))

([ V1 =Yo+hf(ty,v(ty)) =1+05x1=1.50
Y. =v; + hf(t;,y(t)) = 1.5+ 0.5 x 1.5 = 2.50

Yn = Yn-1 + hf (tn_1,y(tn_1)) = 17.11 4+ 0.5 * 17.11 = 54.60

De cette maniére on va remplir le tableau suivant ;

35 [17,086 |33,115 0 1 ) 3 4
4 |25629 |54,598

S.AOULMIT

60.000
h=0,5 y=et r
n |Time | Euler |Analytic 50.000 -——
Method 4= Euler rule h=0,5 / Errorof
h=0,5 40.000 - Analytic evalution
olo 1000 |1,000 - /
1/05 (1,500 1,649 30.000 /
211 2,250 2,718
3115 3,375 4,482 20.000 /
4|2 5,063 7,389 /
5|25 |7,504 [12,182 10.000
6|3 11,391 |20,086
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Chapter 4 Solving of first-order ordinary differential equations

h=0,1 h=0,1
n |xn |yn y=ex(x) n |[xn |yn y=ex(x)
0 |0 1,000 |1,000 21 (2,1 7,400 |8,166
1 (0,1 | 1,100 |1,105 22 12,2 8,140 9,025
2 0,2 | 1,210 |1,221 23 2,3 8,954 |9,974
3 /0,3 1,331 |1,350 24 12,4 9,850 11,023
4 0,4 | 1,464 |1,492 25 (2,5 | 10,835 |12,182
5 |05 | 1,611 |1,649 26 (2,6 | 11,918 |13,464
6 (06| 1,772 |1,822 27 12,7 | 13,110 |14,880
7 10,7 | 1,949 |2,014 28 12,8 | 14,421 |16,445
8 |08 | 2,144 |2,226 29 12,9 15,863 |18,174
9 |0,9| 2,358 |2,460 30 |3 17,449 | 20,086
10 |1 2,594 |2,718 31 (3,1 | 19,194 |22,198
11 (1,1 | 2,853 |3,004 32 (3,2 21,114 |24,533
12 (1,2 | 3,138 |3,320 33 (3,3 | 23,225 |27,113
13 11,3 | 3,452 |3,669 34 (3,4 | 25,548 |29,964
14 (1,4 | 3,797 |4,055 35 (3,5 | 28,102 |33,115
15|1,5 | 4,177 [4,482 36 [3,6 | 30,913 |36,598
16 [1,6 | 4,595 |4,953 37 13,7 | 34,004 |40,447
17 {1,7 | 5,054 |5,474 38 (3,8 | 37,404 |44,701
18 11,8 | 5,560 |6,050 39 (3,9 | 41,145 |49,402
19 (1,9 | 6,116 |6,686 40 |4 45,259 |54,598
20 |2 6,727 |7,389

60.000

50.000 Euterh=071

40,000 === Analytique //
30.000 //
20.000 //

10.000

0-000 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr0rr7 11 1T
0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3 3.23.43.63.8 4

Figure 4.6 : Numerical and analytical solutions of the differential equation 2.

The two figures below give a good illustration of the effect of the step h on Euler's method.
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Chapter 4 Solving of first-order ordinary differential equations

4.3 Runge-Kutta Methods

To find the direction that we must follow to evaluate the value of y,,,; from y,,, Runge-Kutta
methods take into consideration higher orders in the Taylor expansion.
dy h?d%*y, h3d3y, h*d*y,

_ s = o . 5
Ynir =¥ Fhortor ot am Y T OY)

We can write:
h? df(tnr y(tn)) h3 dzf(tn' Y(tn)) h* dgf(tn: Y(tn))
Vn+1 :yn-l'hf(tnr:V(tn))‘l"i'ET"'i dt2 +E dcs
hdf(tn,y(ty)  h*d*f(tny(t,)  h*d>f(tny(tn)
Yn+1 = Yn +h<f(tn,y(tn)) t+o ( di/ )+§ (dtf )+E—(dt§, ))
Yn+1 =Yn t+ h®(tnr}’(tn))
Where ;
hdf(tn,y(t,)) h*d*f(tny(ty) h*d>f(tn y(t,)
O(tn, y(t)) = (f(tn,yo:n)) to ( 2 Ly 5 ( s ) 5%)

represents the average slope (i.e., the average of the directions to be followed in order to get
the best estimate of y,, ., from the y,, value). According to the order of Taylor expansion, we
classify the families of Runge-Kutta methods. The most commonly used classes are Runge-
Kutta of order 2 (RK2) and Runge-Kutta of order 4 (RK4).

The mathematical demonstration is very difficult, so we only give the general relationship:

Yn+1 = Yn + hm(thY(tn))

Q)(tm y(tn)) = Z aiki

e s : order of Runge-Kutta method,

ek, the slope at given points in the interval [t,, t,+1]

e Yiai=1

-
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Chapter 4

kl == f (tn’yn)’
k2 = f(tn +b2h1 yn + hCZlkl)

I(3 = f (tn +b3h’ yn + h(CSlkl +C32k2)

Ky = f(t, +b,h, Y, +h(Cyk; +Cpok; +Coks) mmme{

Solving of first-order ordinary differential equations

ks = f (tn + bsh’ yn + h(cslkl + CSZkZ + "'Css—lks—l)

The coefficients a; b etc;; are arranged in the Butcher table:

b :1..s
c;l<j<is<s

0

b, C21 s
E a, =1

bs Ca1 Ca2 i
i—1

b4 Ca1 Ca2 Cu3 Cij = bi
j=1

bs Cs1 Cs2 Css-1

ay ay as

4. 3. 1 Runge-Kutta Methods of d’ordre 1 (RK1)

a,=a=1
klzk: f(tn'yn)
Yo = Yo +hf(t,,y,)

It is very clear that RK1 corresponds to the Euler method that we studied in the previous

paragraph. In another way, we can consider that Euler's method is a special case of Range-

Kutta.
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Chapter 4 Solving of first-order ordinary differential equations
4. 3. 2 Runge-Kutta Methods of d’ordre 2 (RK2)

yn+1 yn + h(alk + a k )

1 - f (tnl yn)’

k, = f(t, +b,h,y, +hc, k)

Depending on the values of &, a,, b,, and C,, we distinguish two types of Runge-Kutta of
order 2:

0 0 0
b2 Cxn 1 1 i l
2 2
& a, 1 1 0 1
2 2

2 b

Sa -1 @ )

i=1 . .

o Heun Mid-point

2.6 =h,

» Demonstration
Taking into account only the second term of Taylor's expansion.

dy h®d?y

+h=2+ , h=At y, =vy,(t,
Yoa =Y+ N+ 02 y y(),

h? df_(t.,y.)
+hf (t,y)+——ndnd
yn+l yn (ny) 2 dt

df, (t,, ¥,) df(t,y)dy(t,y)
+hf t’ . n n n n n n n
yn+1 yn (n y) 2|: dt dy dt

2

h
You = Yo +hE (L, Y,) +— [fm(tn,yn>+ £ (s yo) ot v

Where f, (t,, y,)et T, (t,,Y,) are the derivatives of f,(t,,y,)with respect to tand toy
respectively.

2 2

h h
Yiw = Yo+ 0l (ta, Vo) 2 Tia (b V) + = T (G, Yo)- T (s Y ) e (%)
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Chapter 4 Solving of first-order ordinary differential equations

Equation 1 gives the final formula for the Taylor expansion.

We will find the Taylor expansion, but this time using the Runge-Kutta equation of order 2,
given by:

yn+l = yn + ahlf (tn7 yn) + azhf (tn +b2h! yn + hCZlf (tm yn)) --------------------------

Then,

yn+1 = yn + ahlf (tn’ yn) + th[f (tn + yn) +b2hftn(tn’ yn) + h(-':Zlfyn (tn' yn) fn(tn’ yn)J

yn+l = yn + (ai + az)hf (tn’ yn) + aZbthtn (tn1 yn) + aZCZlhfyn (tn’ yn) fn (tn’ yn) """""" (**)

Comparing (*) and (**) we find,

v a=a,=—=b,=1c,=1...... case of Heun,

1 1 o
v a=04a,=1=bh, =5 Cyy =5 case of Mid-point.

kl = f(tn’ yn)’

_1 h
—y,+ Dk, 4k
i Vo = Yo 55 (ki o) {kzzf(tn+h,yn+hkl)

» Graphical Representation:

Figure 4.4 shows the graphic representation of Heun’s method, where:

k, : The slope of y at the point (tn,yn),

K, : The slope of yn+1 at the point (th+1, Yn+hka).
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Chapter 4

Solving of first-order ordinary differential equations

1 d,=nf, +hy, +k)
(.

........

K+ K, ¢, =h e _ni(t,.y,)
2 dt
1
tn thea

Figure 4. Graphical representation of Heun's method

4. 3. 2. 2 Midpoint Method

k,=f(,.Y,),

h h
k,=f(t, +—, —k
2 (n+2yn+2 1)

yn+l = yn + hkz

Example 4.3

d =hk,

________

v

Figure 4. . Graphical representation of Midpoint

Let’s take the previous example with h=0.5

S.AOULMIT
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Chapter 4 Solving of first-order ordinary differential equations
h=0,5 120.000
n|ts Mid-point | Analytic
1/0,000 |1,000 0,000 100.000 .
2/0,500 |1,625 1,649 80.000 === Analytique
3(1,000 |2,641 2,718 - Mid-point
411,500 |4,291 4,482 00.000
5]2,000 |6,973 7,389 40.000 )a
6(2,500 |11,331 12,182
7(3,000 |18,413 20,086 20.000
813,500 |29,921 33,115 0.000 ‘el T
94,000 |48,621 54,598 123 4567 89

a)- Values of y found with
Mid-point method (h=0.5)

b)- Graphical comparison of analytic to Mid-
point numerical results.

4.3.3.Runge-Kutta d’ordre 4 (RK4)

In this class of methods, we take into consideration the 4™ degree of Taylor expansion.

0 2 : a, =
i

b, C21 <
E c; = bi
j=1

b3 Cs1 C32

bs Ca1 Ca2 Cy3

ai a, as dq

Depending on the conditions that must be fulfilled by the constants a;, b;, and c;, we can find

several rank 4 methods (RK4 family). The most stable method that gives good results is when

the constants are as given in the following Butcher table,
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Chapter 4 Solving of first-order ordinary differential equations

Yoii= Ya +%(k1 + 2k2 +2k3 + k4)
kl = f(tn’yn)1

1 1
K, = £ty + > h.y, + k)

Ll U SN -

1 1
k,=f(t +=h, —hk
3 (n+2 yn+2 2)

o|lk|lo © N |-
oINO N
o N -

| —

k, =f(t,+hy, +hk;)

The figure below gives a graphical illustration of RK4 method.

h
* Yo+ 2 (k1 + 2ky + 2ks + ky)
Yo + hk3
h A ~ ks
y() + _kz ..... /I
2 k /!
A 3 J
—ky e, J v
Yo + 5 KL > "k,
.......... v oo 1
vy
h to+h
tO tO E

Figure : Graphical representation of the Runge-Kutta 4 (RK4) method

Example 4

a- Use the Runge-Kutta method of order 4 to calculate the first three iterations with
h=0.1 to solve the differential equation.

dy_
a7
y(0)=1
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Chapter 4

Use the Runge-Kutta method of order 4 to calculate the nine iterations with h=0.5 for

Solving of first-order ordinary differential equations

h=0.1

k1=0.2442

k2=0.2687

k3=0.2711

y1=1.221

k4=0.2985

k1=0.2442

k2=0.2687

k3=0.2711

y2=1.492

k4=0.2985

k1=0.2442

k2=0.2687

k3=0.2711

y3=1.822

k4=0.2985

dy_
a7
y(0)=1

a-
the differential equation
h=0,5
njt y_RK4 y_Analy
1/0,000 |1,000 1,000
2/0,500 |[1,648 1,649
3/1,000 (2,717 2,718
41,500 |4,479 |4,482
5/2,000 |7,384 |7,389
6]2,500 [12,172 |12,182
7/3,000 |20,065 |20,086
8|3,500 |33,076 |33,115
9(4,000 |54,523 |54,598

S.AOULMIT
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—#—y RK4 (h=0.5)
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y_Analy

30.000

20.000
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Chapter 4 Solving of first-order ordinary differential equations

In the following table and graph, we give the values and curves for the four previous methods

(Euler, Mid-point, Heun, and RK4) as well as the analytical result.

n t |y_euler|y mid |y heun| y RK4 |y Analy
1 |0,000f 1,000 | 1,000 | 1,000 | 1,000 | 1,000
2 (0,500 1,500 | 1,625 | 1,625 | 1,648 | 1,649
3 |1,000| 2,250 | 2,641 | 2,641 | 2,717 | 2,718
4 |1,500| 3,375 | 4,291 | 4,291 | 4,479 | 4,482
5 (2,000| 5063 | 6973 | 6973 | 7,384 | 7,389
6 |[2,500( 7,594 |11,331| 11,331 | 12,172 | 12,182
7 (3,000 11,391 |18,413| 18,413 | 20,065 | 20,086
8 [3,500| 17,086 | 29,921 | 29,921 | 33,076 | 33,115
9 1[4,000| 25,629 | 48,621 | 48,621 | 54,523 | 54,598
60.000
50.000 Ty euler B
==y mid
40.000 y_heun
=&=y RK4
30.000 it
==y Analy

20.000 /
o M
0.000 - T T T T 1

0.000 1.000 2.000 3.000 4.000 5.000

Figure : Graphic representation of the four numerical methods and the analytical curve.
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