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Chapter 4   

 

Solving of first-order ordinary differential equations 

 

4.1 Introduction:  

An ordinary differential equation (ODE) is an equation relating a real variable and its 

derivatives. The ODE is written in the following form: 

y(t))f(t,=
dt

dy
=y             (1) 

Where 𝑦 is the unknown function, �̇� is its derivative, and 𝑡 is the real variable. 

Exemple 1 :  

y
dt

dy
y             (2) 

The solution of this equation can be determined analytically: it is given by: 

𝑦(𝑡) = 𝑐𝑒𝑡           (3) 

There is an infinity of solutions to this differential equation due to the integration constant c. 

To determine the appropriate solution to our physical state, we must refer to the data already 

known, generally specified via two categories of conditions or two categories of problems:   

Initial conditions (Cauchy problem) 

The initial condition gives the value of the function and its derivatives at a given time, called 

the initial time. In another way, to find the values of the function at other points in the 

domain, we must know the value of the function y and its derivatives in the initial state.  

At an initial value 𝑡0, we have  

 𝑦(𝑡0) = 𝑦0          (4)
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We can therefore evaluate the value of c via this initial condition. If we take y(0)=1 at t=0 in 

the previous example (eq. 3), the value of c will be equal to 1, and the final solution of the 

differential equation will be given by: 

𝑦(𝑡) = 𝑒𝑡           (6) 

 Condition aux limites (Problème aux limites) 

A boundary condition expresses the behavior (gives the values) of a function on the boundary 

(border) of its area of definition 

  
𝑦𝑖=
𝑦𝑓=

          (7) 

In this course, we are only interested in the solution of ODEs in the Cauchy problem (that is, 

if we know the initial condition). 

Consider the following differential equation: 

�̇�(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),   𝑡 ∈ [𝑡0   𝑡𝑓]        (8) 

With the initial condition (Cauchy problem), 00 )( yty   

The above example (eq. 3) is very easy to solve analytically, but there are many ODEs that 

cannot be solved analytically. In these cases, numerical analysis offers methods to find an 

approximate solution. 

The Cauchy problem is an evaluation problem; that is to say, from the initial condition, we 

can evaluate the value of 𝑦1 at 𝑡1 = 𝑡0 + ∆𝑡 and evaluate the value of 𝑦2 from 𝑦1 and so on. 

- if 𝑦𝑛+1 is only function of 𝑡𝑛 et 𝑦𝑛, we say that we have ‘One step diagram’ 

 

Figure 4.1 : Diagram illustrating the scenario 

 

y0 

t0 

y1 

yn 

yn+1 

tn tn+1 t1 

Valeur  donné (initiale) 

Valeur trouvée à partir de yn 

Valeur trouvée à partir de y0 

Value initially given 

Value found from 𝑦0 

 

Value found from 𝑦𝑛 
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4.2 Uniqueness of the solution    

If we assume that, the function f is continuous for the two variables t and y and that f is 

uniformly Lipschitzian for y, that is to say: 

  2121210 ),(),(,0,, yyLytfytfLRyetyTtt   

Therefore, the differential equation admits a unique solution y ∈ C1([𝑡0, 𝑇]). 

 Question: The question that arises is: what is the method to estimate the value of 𝑦1 

from 𝑦0?  

 Response: The idea is based on linearization. That is, we assume that the curve 

between the two points is a straight line. 

o But, 

 

 

 

 

 

 

 

 

 Reponses: Taylor expansion responses on this question and gives the direction that 

better estimates the value of 𝑦1 𝑎𝑡 𝑡1  =  𝑡0 + ∆𝑡  

The Taylor expansion is given by:  

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑑𝑦

𝑑𝑡
+
ℎ2

2!

𝑑2𝑡

𝑑𝑡2
+
ℎ3

3!

𝑑3𝑡

𝑑𝑡3
+
ℎ4

4!

𝑑4𝑡

𝑑𝑡4
+ 𝑂(ℎ5)     (9) 

{

𝑦𝑛 = 𝑦(𝑡𝑛)                                                                                  
     ℎ = 𝑡𝑛+1 − 𝑡𝑛                                                                                

𝑂(ℎ5) ∶  𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑚𝑎𝑑𝑒 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑑𝑒𝑔𝑟𝑒𝑒

 

Using this development, we can deduce the direction we must follow to find the best 

estimation of 𝑦 at 𝑡(𝑛+1) = 𝑡𝑛 + ∆𝑡. We will clarify this idea in the following paragraphs. 

 

Figure 4.2:  Schematic presentation of the problem 

 

y0 

t0 t1 

Quel est la valeur 

de y1 ?  

Quel est la direction 

que l’on doit suivre 

pour mieux évaluer  

y1 ?  

Which direction leads to 

better evaluation? 
What is the value 

of y? 
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4. 2 Euler's method 

The first-order ordinary differential equation is given by: 

�̇� =
𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦(𝑡))         (10)

 

Assume that only the first term of the Taylor expansion provides an acceptable evaluation of 

the value of y, so, 

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑑𝑦

𝑑𝑡
         (11) 

Knowing that, 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦(𝑡)) 

 

𝑑𝑦

𝑑𝑡
 : represents the slope of 𝑓 at the point (𝑦𝑛, 𝑡𝑛).  

First order development of Taylor can be graphically represented in the figure 4.3. 

 

 

 

 

 

 

 

 fihu 

 

Example: �̇� =
𝑑𝑦

𝑑𝑡
= 𝑦 + 𝑡,  

That means  𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦𝑛 + 𝑡𝑛 

              

Figure 4.3: schematic representation of Euler idea to evaluate the next solution. 

 

 

y0 

t0 

La ligne qui relie les deux points est la droite 

représentant la pente au point (tn,yn)  

t1 

y1  

 

y0 

t0 

La pente au point (t0,y0) : ),( 00 ytf
h

d
k

dt

dy
   

t1 

dyy  01  

d  
dt

dy
hd   

h  

The direction of the slope at the point y0 

provides a better estimation of y1. 

The slope at 
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Figure 4.4 represents a graphical explanation of Euler's idea of how to estimate the next value 

from the known previous value. 

 

 

 

 

 

 

 

With the same analysis, we obtain all ODE values in the study interval. 

{
 
 

 
 

𝑦1 = 𝑦0 + ℎ𝑓(𝑡0, 𝑦0)

𝑦2 = 𝑦1 + ℎ𝑓(𝑡1, 𝑦1)
.
.
.

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑡𝑛−1, 𝑦𝑛−1)

 

Figure 4.5 gives a graphical representation of the approximate solution. 

 

 

 

 

 

 

 

 

 

 

Figure 4. 4: The estimation solution of the second value from the first 

 

y0 

t0 

L’erreur d’estimation  

t1 

dyy  01  

d  
dt

dy
hd   

h  

La vraie valeur  Real value Error of estimation 

 
Figure 4. 5: Graphical representation of Euler method 

Unknown 

Slope 1 

Slope 2 
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Notes: 

1.  It is very clear that the approximate value of 𝑦𝑛+1 is better when h is small. 

2. We can rewrite Euler's equation as:  

{
𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑎𝑘            

𝑘 = 𝑓(𝑡𝑛, 𝑦𝑛)      
𝑎 = 1                    

   

Example 4. 1 

Taking the following differential equation 

{

𝑑𝑦

𝑑𝑡
= 𝑦

𝑦(0) = 1
 

The exact solution (analytical solution) of this equation is given by,  

𝑦 = 𝑒𝑡 

We want to find numerically the values of y (the solution to the differential equation) in the 

interval 𝑡 ∈ [0, 4] with Euler's method in two cases; h=0.5  and h=0.1. 

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) 

{
  
 

  
 

𝑦1 = 𝑦0 + ℎ𝑓(𝑡0, 𝑦(𝑡0)) = 1 + 0.5 × 1 = 1.50                       

       𝑦2 = 𝑦1 + ℎ𝑓(𝑡1, 𝑦(𝑡1)) = 1.5 + 0.5 × 1.5 = 2.50                       
.
.
.

       𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑡𝑛−1, 𝑦(𝑡𝑛−1)) = 17.11 + 0.5 ∗ 17.11 = 54.60

 

 

De cette manière on va remplir le tableau suivant ; 

 

 

 

 

 

 

h=0,5   𝑦 = 𝑒𝑡 

n Time Euler 

Method 

h=0,5 

Analytic 

0 0 1,000 1,000 

1 0,5 1,500 1,649 

2 1 2,250 2,718 

3 1,5 3,375 4,482 

4 2 5,063 7,389 

5 2,5 7,594 12,182 

6 3 11,391 20,086 

7 3,5 17,086 33,115 

8 4 25,629 54,598 

 

 

0.000

10.000

20.000

30.000

40.000

50.000

60.000

0 1 2 3 4 5

Euler Methode h=0,5

Analytique

Error of 

evalution

Euler rule

Analytic
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The two figures below give a good illustration of the effect of the step h on Euler's method. 

 

Figure 4.6 : Numerical and analytical solutions of the differential equation 2. 

h=0,1 
  

h=0,1 
 n xn yn y=ex(x) 

 
n xn yn y=ex(x) 

0 0 1,000 1,000 
 

21 2,1 7,400 8,166 

1 0,1 1,100 1,105 
 

22 2,2 8,140 9,025 

2 0,2 1,210 1,221 
 

23 2,3 8,954 9,974 

3 0,3 1,331 1,350 
 

24 2,4 9,850 11,023 

4 0,4 1,464 1,492 
 

25 2,5 10,835 12,182 

5 0,5 1,611 1,649 
 

26 2,6 11,918 13,464 

6 0,6 1,772 1,822 
 

27 2,7 13,110 14,880 

7 0,7 1,949 2,014 
 

28 2,8 14,421 16,445 

8 0,8 2,144 2,226 
 

29 2,9 15,863 18,174 

9 0,9 2,358 2,460 
 

30 3 17,449 20,086 

10 1 2,594 2,718 
 

31 3,1 19,194 22,198 

11 1,1 2,853 3,004 
 

32 3,2 21,114 24,533 

12 1,2 3,138 3,320 
 

33 3,3 23,225 27,113 

13 1,3 3,452 3,669 
 

34 3,4 25,548 29,964 

14 1,4 3,797 4,055 
 

35 3,5 28,102 33,115 

15 1,5 4,177 4,482 
 

36 3,6 30,913 36,598 

16 1,6 4,595 4,953 
 

37 3,7 34,004 40,447 

17 1,7 5,054 5,474 
 

38 3,8 37,404 44,701 

18 1,8 5,560 6,050 
 

39 3,9 41,145 49,402 

19 1,9 6,116 6,686 
 

40 4 45,259 54,598 

20 2 6,727 7,389 
      

0.000

10.000

20.000

30.000

40.000

50.000

60.000

0 0.20.40.60.8 1 1.21.41.61.8 2 2.22.42.62.8 3 3.23.43.63.8 4

Euler h=0.1

Analytique
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4.3 Runge-Kutta Methods  

To find the direction that we must follow to evaluate the value of 𝑦𝑛+1 from 𝑦𝑛, Runge-Kutta 

methods take into consideration higher orders in the Taylor expansion. 

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑑𝑦

𝑑𝑡
+
ℎ2

2!

𝑑2𝑦𝑛
𝑑𝑡2

+
ℎ3

3!

𝑑3𝑦𝑛
𝑑𝑡3

+
ℎ4

4!

𝑑4𝑦𝑛
𝑑𝑡4

+ 𝑂(ℎ5) 

We can write: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + +
ℎ2

2!

𝑑𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡
+
ℎ3

3!

𝑑2𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡2
+
ℎ4

4!

𝑑3𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡3
 

𝑦𝑛+1 = 𝑦𝑛 + ℎ (𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + +
ℎ

2!

𝑑𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡
+
ℎ2

3!

𝑑2𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡2
+
ℎ3

4!

𝑑3𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡3
) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ∅(𝑡𝑛, 𝑦(𝑡𝑛)) 

Where ; 

∅(𝑡𝑛, 𝑦(𝑡𝑛)) = (𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + +
ℎ

2!

𝑑𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡
+
ℎ2

3!

𝑑2𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡2
+
ℎ3

4!

𝑑3𝑓(𝑡𝑛, 𝑦(𝑡𝑛))

𝑑𝑡3
) 

represents the average slope (i.e., the average of the directions to be followed in order to get 

the best estimate of 𝑦𝑛+1 from the 𝑦𝑛 value). According to the order of Taylor expansion, we 

classify the families of Runge-Kutta methods. The most commonly used classes are Runge-

Kutta of order 2 (RK2) and Runge-Kutta of order 4 (RK4). 

The mathematical demonstration is very difficult, so we only give the general relationship: 

{

𝑦𝑛+1 = 𝑦𝑛 + ℎ∅(𝑡𝑛, 𝑦(𝑡𝑛))

∅(𝑡𝑛, 𝑦(𝑡𝑛)) =∑ 𝑎𝑖𝑘𝑖

𝑠

𝑖

           
 

 

 s : order of Runge-Kutta method,   

 ik  the slope at given points in the interval [𝑡𝑛, 𝑡𝑛+1] 

 ∑ 𝑎𝑖 = 1
𝑠
𝑖  

 



Chapter 4                                                   Solving of first-order ordinary differential equations 

S.AOULMIT 
9 

 





























 )...(,(

.

.

.

)(,(

)(,(

),(

),,(

112211

34324214144

23213133

12122

1

sssssnsns

nn

nn

nn

nn

kckckchyhbtfk

kckckchyhbtfk

kckchyhbtfk

khcyhbtfk

ytfk

 where  




 sijc

sb

ij

i

1

....1:
 

 The coefficients ijii cetba ,  are arranged in the Butcher table: 

 

 

 

 

 

 

 

 

 

4. 3. 1 Runge-Kutta Methods of d’ordre 1 (RK1)  
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It is very clear that RK1 corresponds to the Euler method that we studied in the previous 

paragraph. In another way, we can consider that Euler's method is a special case of Range-

Kutta. 
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4. 3. 2 Runge-Kutta Methods of d’ordre 2 (RK2) 
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Depending on the values of 1a , 2a , 2b , and 21c  we distinguish two types of Runge-Kutta of 

order 2: 

 

 

 

 

 

 

 

 

 

 

------------------------------------------------------------------------------------------------------------- 

 Demonstration 

Taking into account only the second term of Taylor's expansion.

)(,,
!2 2

22

1 nnnnn tyyth
dt

ydh

dt

dy
hyy 

, 

dt

ytdfh
ythfyy nnn

nnnnn

),(

2
),(

2

1  ……………. 











dt

ytdy

dy

ytdf

dt

ytdfh
ythfyy nnnnnnnnn

nnnnn

),(
.

),(),(

2
),(

2

1 …………….. 

 ),().,(),(
2

),(
2

1 nnnnnynnntnnnnnn ytfytfytf
h

ythfyy  ………….. 

Where ),( nntn ytf et ),( nnyn ytf  are the derivatives of ),( nnn ytf with respect to t and to y 

respectively. 

),().,(
2

),(
2

),(
22

1 nnnnnynnntnnnnnn ytfytf
h

ytf
h

ythfyy  ……………… (*) 

 

 

1a  2a  

0  

2b  
21c  

2

1
 

2

1
 

0  

1  1  

0  1  

0  

2

1
 

2

1
 














1

1

2

1

1

i

j

iij

i

i

bc

a

 

(a) 

Heun 

(b) 

Point milieu Mid-point 
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Equation 1 gives the final formula for the Taylor expansion. 

We will find the Taylor expansion, but this time using the Runge-Kutta equation of order 2, 

given by: 

)),(,(),( 212211 nnnnnnnn ytfhcyhbthfaytfahyy  …………………….. 

Then, 

 ),(),(),()(),( 212211 nnnnnynnntnnnnnnn ytfytfhcythfbytfhaytfahyy 

………… 

),(),(),(),()( 21222211 nnnnnynnntnnnnn ytfythfcaythfbaythfaayy  …………(**) 

Comparing (*) and (**) we find, 





















2

1

2

1

1

212

22

21

ca

ba

aa

…………… 

 1,1
2

1
21221  cbaa ……. case of Heun, 

 
2

1
,

2

1
1,0 21221  cbaa … case of Mid-point. 

------------------------------------------------------------------------------------------------------------- 

4. 3. 2. 1 Heun's method (modified Euler) 
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221
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12

1
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ytfk

nn

nn
 

 Graphical Representation: 

Figure 4.4 shows the graphic representation of Heun’s method, where: 

1k  : The slope of y at the point (tn,yn), 

2k  : The slope of yn+1 at the point (tn+1, yn+hk1). 
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4. 3. 2. 2 Midpoint Method 

 

 

 

 

 

 

 

 

Example 4.3 

Let’s take the previous example with h=0.5 

{

𝑑𝑦

𝑑𝑡
= 𝑦

𝑦(0) = 1
 

 

 

Figure 4. Graphical representation of Heun's method 
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Figure 4. . Graphical representation of Midpoint 
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4.3.3.Runge-Kutta d’ordre 4 (RK4) 

 In this class of methods, we take into consideration the 4th degree of Taylor expansion. 

 

 

 

 

 

 

 

 

 

Depending on the conditions that must be fulfilled by the constants 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖, we can find 

several rank 4 methods (RK4 family). The most stable method that gives good results is when 

the constants are as given in the following Butcher table, 

 

 

 

 

 

 

 

 

 

 

 

b2 

b3 

b4 

0 

c21 

c31 c32 

c41 c42 c43 

a1 a2 a4 
























1

1

1

i

j

ij

s

i

i

bic

a

 

a3 

 

0.000

20.000

40.000

60.000

80.000

100.000

120.000

1 2 3 4 5 6 7 8 9

Analytique

Mid-point

h=0,5 
 n tn Mid-point Analytic 

1 0,000 1,000 0,000 

2 0,500 1,625 1,649 

3 1,000 2,641 2,718 

4 1,500 4,291 4,482 

5 2,000 6,973 7,389 

6 2,500 11,331 12,182 

7 3,000 18,413 20,086 

8 3,500 29,921 33,115 

9 4,000 48,621 54,598 

 
b)- Graphical comparison of analytic to Mid-

point numerical results. 
a)- Values of y found with 

Mid-point method (h=0.5) 
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The figure below gives a graphical illustration of RK4 method. 

 

 

Example 4 

a- Use the Runge-Kutta method of order 4 to calculate the first three iterations with 

h=0.1 to solve the differential equation. 

{

𝑑𝑦

𝑑𝑡
= 𝑦

𝑦(0) = 1
 

 

Figure : Graphical representation of the Runge-Kutta 4 (RK4) method 
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n h=0.1 

1 

𝑘1=0.2442 

y1=𝟏.𝟐𝟐𝟏 𝑘2=0.2687 

𝑘3=0.2711 

𝑘4=0.2985 

2 

𝑘1=0.2442 

y2=𝟏.𝟒𝟗2 𝑘2=0.2687 

𝑘3=0.2711 

𝑘4=0.2985 

3 

𝑘1=0.2442 

y3=1.822 𝑘2=0.2687 

𝑘3=0.2711 

𝑘4=0.2985 

 

a-  Use the Runge-Kutta method of order 4 to calculate the nine iterations with h=0.5 for 

the differential equation 

{

𝑑𝑦

𝑑𝑡
= 𝑦

𝑦(0) = 1
 

 

 

 

 

 

 

 

 

 

 

 

 

h=0,5 
 n t y_RK4 y_Analy 

1 0,000 1,000 1,000 

2 0,500 1,648 1,649 

3 1,000 2,717 2,718 

4 1,500 4,479 4,482 

5 2,000 7,384 7,389 

6 2,500 12,172 12,182 

7 3,000 20,065 20,086 

8 3,500 33,076 33,115 

9 4,000 54,523 54,598 
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In the following table and graph, we give the values and curves for the four previous methods 

(Euler, Mid-point, Heun, and RK4) as well as the analytical result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure : Graphic representation of the four numerical methods and the analytical curve. 
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n t y_euler y_mid y_heun y_RK4 y_Analy 

1 0,000 1,000 1,000 1,000 1,000 1,000 

2 0,500 1,500 1,625 1,625 1,648 1,649 

3 1,000 2,250 2,641 2,641 2,717 2,718 

4 1,500 3,375 4,291 4,291 4,479 4,482 

5 2,000 5,063 6,973 6,973 7,384 7,389 

6 2,500 7,594 11,331 11,331 12,172 12,182 

7 3,000 11,391 18,413 18,413 20,065 20,086 

8 3,500 17,086 29,921 29,921 33,076 33,115 

9 4,000 25,629 48,621 48,621 54,523 54,598 

 


