Centre universitaire de Mila Institut de Mathématiques et Informatique

Première année LMD Informatique 2023-2024

Matière : Algèbre I Série 2

Exercice $n^{\circ}1$: Soit l'ensemble $A = \{1, 2, 3\}$. Les relations suivantes sont elles vraies?

$$3 \in A$$
 $3 \subset A$ $\phi \in A$ $\{\{1,2\},3\} = A$ $\{1,2\} \subset A$ $A \cup \{\phi\} = A$

Exercice $n^{\circ}2$: Soient *E* et *F* des ensembles. Montrer les propriétés suivantes :

- (a) $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$.
- (b) $\mathcal{P}(E \cup F) \subset \mathcal{P}(E) \cup \mathcal{P}(F)$.

Trouver deux ensembles E et F tels que $\mathcal{P}(E \cup F) \neq \mathcal{P}(E) \cup \mathcal{P}(F)$.

Exercice $n^{\circ}3$: Soient A, B, C trois parties d'un ensembles non vide E. Soient P(A, B) l'assertion

$$\forall x \in E : (x \in A \Longrightarrow x \notin B)$$

et Q(A, B) l'assertion

$$\exists x \in E : (x \in A \land x \notin B)$$

- 1. Traduire P(A, B) en termes de relation entre ensembles.
- 2. Ecrire non(P(A, B)) puis la traduire en termes de relation entre ensembles.
- 3. Que peut-on dire de A et B si elles vérifient P(A, B) et $P(C_E^A, C_E^B)$?
- 4. Que peut-on dire de A et B si elles vérifient non(Q(A, B)) et non(Q(B, A))?

Exercice $n^{\circ}4$: Soient A, B, D trois parties d'un même ensemble E.

- (1) Montrer les relations suivantes :
- (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- (b) $A \subset B \Longrightarrow C_E^B \subset C_E^A$.
- (c) $A \setminus (A \cap B) = A \setminus B$.
- (d) $A \setminus (B \cap D) = (A \setminus B) \cup (A \setminus D)$.
- (e) $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- (2) Calculer $A \triangle A$, $A \triangle \emptyset$, $A \triangle E$ et $A \triangle C_E^A$.

<u>Exercice n°5</u>: Dire si les relations suivantes sont réflexives, (anti)-symétriques et/ou transitives :

- 1. $\forall x, y \in \mathbb{Z} : x \Re_1 y \iff x = -y$.
- 2. $\forall x, y \in \mathbb{R} : x \Re_2 y \iff \cos^2 x + \sin^2 y = 1$.
- 3. $\forall x, y \in \mathbb{R} : x\mathfrak{R}_3 y \iff |x| = |y|$.

Exercice $n^{\circ}6$: Soit \Re une relation binaire définie sur l'ensemble \mathbb{Z} , comme suit

$$\forall x, y \in \mathbb{Z} : x \Re y \iff \exists k \in \mathbb{Z} : x + 2y = 3k$$

- 1. Montrer que \Re est une relation d'équivalence sur l'ensemble \mathbb{Z} .
- 2. Soit $x \in \mathbb{Z}$. Déterminer la classe d'équivalence de x notée \dot{x} .
- 3. Déterminer l'ensemble quotient \mathbb{Z}/\mathfrak{R} .

Exercice n $^{\circ}$ 7 : On définit sur \mathbb{N}^{*} une relation \Re par

$$\forall x, y \in \mathbb{N}^* : x \Re y \iff \exists n \in \mathbb{N}^* : y = x^n$$

Cette relation peut s'énoncer aussi "y est une puissance entière non nulle de x".

- 1. Montrer que \Re est une relation d'ordre partiel sur \mathbb{N}^* .
- 2. Soit $A = \{2, 4, 16\}$ une partie de \mathbb{N}^* . Etudier suivant la relation \Re l'existence de plus grand élément et plus petit élément de A (max(A)) et min(A)).

Exercice n°8 : Supplémentaire

Soit dans \mathbb{R}^2 la relation binaire \Re définie par

$$\forall (x, y), (x', y') \in \mathbb{R}^2 : (x, y)\Re(x', y') \iff x \le x' \text{ et } y \le y'$$

- 1. Montrer qu'il s'agit d'une relation d'ordre. L'ordre est-il total?.
- 2. Soit $A = \{(1,2), (3,1)\} \subset \mathbb{R}^2$, préciser les minorants Min(A), les majorants Maj(A), la borne inférieure $\inf_{\mathbb{R}}(A)$ et supérieure $\sup_{\mathbb{R}}(A)$ de A.

Exercice n°9: **Supplémentaire**

Soit E un ensemble et soit A une partie de E. On définit dans l'ensemble $\mathcal{P}(E)$ des parties de E, la relation \Re par

$$\forall X, Y \in \mathcal{P}(E) : X \Re Y \iff X \cap A = Y \cap A$$

- 1. Montrer que \Re est une relation d'équivalence sur $\mathcal{P}(E)$.
- 2. Soit X une partie de E. On note \dot{X} la classe d'équivalence de X pour la relation \mathfrak{R} . Expliciter $\dot{\phi}$, \dot{E} , \dot{A} et C_E^A .

Exercice n°10: Supplémentaire

Soit $E = \mathbb{N}^2$. On définit sur E la relation binaire \mathfrak{R} par

$$\forall \left(n_{1},n_{2}\right),\left(m_{1},m_{2}\right)\in E:\left(n_{1},n_{2}\right)\Re\left(m_{1},m_{2}\right)\Longleftrightarrow\begin{cases} n_{1}\mid m_{1}\\ et\\ \exists k\in\mathbb{N}:m_{2}=n_{2}^{k}\end{cases}$$

- 1. Montrer que \Re est une relation d'ordre sur E.
- 2. Est-ce que \Re est une relation d'ordre total sur E?