Series N°3: Numerical integrations

Exercise 1

Find the integral of the function f(x) defined by the following table:

x	1	1.2	1.4	1.6	1.8
f(x)	1.543	1.811	2.151	2.577	3.107

- Using the simple then generalized trapezoidal method.

- Using the simple then generalized Simpson's method.
- Discus the results.

Exercise 2

Let the integral of the function $\int_0^{\pi/4} tg(x) dx$.

- 1- Use the trapezoidal method for n = 4, then n = 8, to find an approximation of this integral.
- 2- Compare the results with the exact (analytical) value of the integral.

Exercise 3

Using the trapezoid method, calculate the approximate value of $I = \int_0^{\pi} sin(x^2) dx$ for n=5; then n=10

Exercise 4

For $f(x) = \int_0^x te^{-t} dt$ How many subdivisions of [0,1] are needed to evaluate f(1) with a precision of 10^{-8} :

- 1- Using the trapezoid method.
- 2- Using Simpson's method.

Exercise 5 (for students):

For $F(t) = \int_0^t \frac{dt}{1+t^2}$

- 1 For n=10, calculate F(3) using the trapezoid method.
 - 2- Estimate the error made in calculating this value if we use the trapezoidal method and the Simpson method.