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 Chapter 2  

  

Polynomial interpolation  

 

 

2.1 Introduction   

Interpolation is a process that consists of connecting discrete data points (Figure 2.1a) in some 

way to obtain an acceptable estimation of the intermediate points (Fig. 2.1b and 2.1c) or to 

replace a complex function with a simple polynomial where they coincide at a finite number 

of points (Fig. 2.1d). 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Graphical representation of interpolation: a) discrete points, b) linear interpolation, 

c) polynomial interpolation, d) interpolation of a function by a polynomial. 

 

 A simple line (Figure 2.1b) can connect the discrete points; we then talk of linear 

interpolation.  
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 If we connect the discrete points by a polynomial (as shown in Figure 2.1c), the 

interpolation is called polynomial. 

In other words, the goal of interpolation is to establish a relationship between points whose 

values are known to predict intermediate values. In this chapter, we give a brief explanation of 

linear interpolation, and we will focus much more on polynomial interpolation. 

 

2. 2 linear Interpolation  

Linear interpolation consists of connecting the two adjacent points with a line, as shown in 

Figure 2.2. 

 

 

 

 

 

 

 

 

The equation of the line y 1 is given by  

𝑌1 = 𝑎𝑥 + 𝑏 

Where the tangent is given by 

 

𝑎 =
𝑦1 −  𝑦0

𝑥1 −  𝑥0
 

at   𝑥 = 𝑥0,   𝑦 = 𝑦0, then  𝑏 = 𝑦0 −
𝑦1− 𝑦0

𝑥1− 𝑥0
𝑥0 

𝑌1 =
𝑦1 −  𝑦0

𝑥1 −  𝑥0
𝑥 + 𝑦0 −

𝑦1 −  𝑦0

𝑥1 −  𝑥0
𝑥0 

𝑌1 =
𝑦1 −  𝑦0

𝑥1 −  𝑥0

(𝑥 − 𝑥0) + 𝑦0 

𝑌2 =
𝑦2− 𝑦1

𝑥2− 𝑥1
(𝑥 − 𝑥1) + 𝑦1. 

. 

. 

. 

𝑌𝑖 =
𝑦𝑖 −  𝑦1−1

𝑥𝑖 −  𝑥𝑖−1

(𝑥 − 𝑥𝑖−1) + 𝑦𝑖 

 

Figure 2.2 Linear interpolation 
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2. 3 Polynomial interpolation  

2.3.1 Singularity (uniqueness) of the interpolation polynomial 

Theorem 

The necessary and sufficient condition for the existence of a single polynomial for 

interpolation is that all points 𝑥𝑖 be distinct. 

 One point: there is a single polynomial of order zero that passes through this point (fig 

2.2 a). 

 Two points: there is a single polynomial of order one that passes through both points 

(fig 2.2 b). 

 Three points: there is a single polynomial of order two that passes through the three 

points (fig 2.2 c). 

 n points, there is a single polynomial of order n-1 that passes through the n points. 

 

 

 

 

 

 

 

 

 

2.3.2 Lagrange Polynomial 

We call the Lagrange polynomial of degree n, based on the interpolation points (𝑥𝑖, 𝑓(𝑥𝑖)), the 

unique polynomial of order n, which passes exactly through the (n+1) points (𝑖 = 0, …  𝑛). 

The unique polynomial 𝑃𝑛(𝑥) is defined by 

𝑃𝑛(𝑥) = ∑ L𝓀(𝑥)    𝑓(𝑥𝓀),

𝑛

𝓀=0

 

𝑃𝑛(𝑥) = 𝐿0(𝑥) × 𝑓(𝑥0) + 𝐿1(𝑥) × 𝑓(𝑥1) + ⋯ 𝐿𝑛(𝑥) × 𝑓(𝑥𝑛). 

 

Where, 

 L𝓀(𝑥) is the elementary Lagrange polynomial, which is given by: 

L𝓀(𝑥) = ∏
𝑥 − 𝑥𝑖

𝑥𝓀 − 𝑥𝑖

𝑖=𝑛

𝑖=0
𝑖≠𝓀

       

 

 

Figure: 2. 3: polynomial interpolation 

 
𝑝0 = 𝑦0 

a b c 



12 
 

So we can write the Lagrange interpolation polynomial in the form; 

 

𝐿0(𝑥) =  
(𝑥− 𝑥0)

(𝑥0− 𝑥0)
×

(𝑥− 𝑥1)

(𝑥0− 𝑥1)
×

(𝑥− 𝑥2)

(𝑥0− 𝑥2)
× …

(𝑥− 𝑥𝑛)

(𝑥0− 𝑥𝑛)
.  

 

 

𝐿1(𝑥) =  
(𝑥− 𝑥0)

(𝑥1− 𝑥0)
×

(𝑥− 𝑥1)

(𝑥1− 𝑥1)
×

(𝑥− 𝑥2)

(𝑥1− 𝑥2)
× …

(𝑥− 𝑥𝑛)

(𝑥1− 𝑥𝑛)
. 

. 

. 

. 

𝐿𝑛(𝑥) =  
(𝑥− 𝑥0)

(𝑥𝑛− 𝑥0)
×

(𝑥− 𝑥1)

(𝑥𝑛− 𝑥1)
×

(𝑥− 𝑥2)

(𝑥𝑛− 𝑥2)
× …

(𝑥− 𝑥𝑛)

(𝑥𝑛− 𝑥𝑛)
  

 

Note that 𝐿𝓀(𝑥) has an interesting property, which is 

𝐿𝑘(𝑥𝑖) = { 
1   𝑖𝑓   𝑖 = 𝑘
0   𝑖𝑓  𝑖 ≠ 𝑘

   

For example, 

𝐿0(𝑥0) =
(𝑥0 − 𝑥1)

(𝑥0 − 𝑥1)
×

(𝑥0 −  𝑥2)

(𝑥0 −  𝑥2)
× …

(𝑥0 −  𝑥𝑛)

(𝑥0 −  𝑥𝑛)
= 1 

𝐿0(𝑥1) =
(𝑥1 −  𝑥1)

(𝑥0 −  𝑥1)
×

(𝑥1 −  𝑥2)

(𝑥0 −  𝑥2)
× …

(𝑥1 − 𝑥𝑛)

(𝑥0 −  𝑥𝑛)
= 0 

𝐿0(𝑥2) =
(𝑥2 − 𝑥1)

(𝑥0 − 𝑥1)
×

(𝑥2 −  𝑥2)

(𝑥0 −  𝑥2)
× …

(𝑥2 −  𝑥𝑛)

(𝑥0 −  𝑥𝑛)
= 0 

 

𝐿1(𝑥1) =
(𝑥1 −  𝑥0)

(𝑥1 −  𝑥0)
×

(𝑥1 −  𝑥2)

(𝑥1 −  𝑥2)
× …

(𝑥1 −  𝑥𝑛)

(𝑥1 −  𝑥𝑛)
= 1 

𝐿1(𝑥2) =
(𝑥2 −  𝑥0)

(𝑥1 −  𝑥0)
×

(𝑥2 −  𝑥2)

(𝑥1 −  𝑥2)
× …

(𝑥2 −  𝑥𝑛)

(𝑥1 −  𝑥𝑛)
= 0 

𝐿1(𝑥𝑛) =
(𝑥𝑛 −  𝑥0)

(𝑥1 −  𝑥0)
×

(𝑥𝑛 −  𝑥2)

(𝑥1 −  𝑥2)
× …

(𝑥𝑛 −  𝑥𝑛)

(𝑥1 −  𝑥𝑛)
= 0 

 

Must be removed, because i must 

be different from j. 
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Example 1  

We want to find the polynomial passing through the points (𝑥𝑖, 𝑦𝑖) resulting from a physical 

experiment, which are recorded in the following table. 

𝑥𝑖 0 1 2 3 

y𝑖 1 4 8 14 

We have four points, so the interpolation polynomial will be of order 3. 

𝑃3(𝑥) = 𝐿0 × 𝑓(𝑥0) + 𝐿1 × 𝑓(𝑥1) + 𝐿2 × 𝑓(𝑥2) + 𝐿3 × 𝑓(𝑥3) 

𝑃3(𝑥) =
(𝑥 −  𝑥1)(𝑥 −  𝑥2)( 𝑥 − 𝑥3)

(𝑥0 − 𝑥1)(𝑥0 −  𝑥2)(𝑥0 −  𝑥3)
×  𝑓(𝑥0) 

              +
(𝑥 −  𝑥0)(𝑥 −  𝑥2)( 𝑥 −  𝑥3)

(𝑥1 −  𝑥0)(𝑥1 −  𝑥2)(𝑥1 −  𝑥3)
× 𝑓(𝑥1) 

             +
(𝑥 −  𝑥0)(𝑥 −  𝑥1)( 𝑥 −  𝑥3)

(𝑥2 − 𝑥0)(𝑥2 −  𝑥1)(𝑥2 −  𝑥3)
 × 𝑓(𝑥2) 

            +
(𝑥 −  𝑥0)(𝑥 −  𝑥1)( 𝑥 −  𝑥2)

(𝑥3 − 𝑥0)(𝑥3 − 𝑥1)(𝑥3 −  𝑥1)
×  𝑓(𝑥3) 

Then, 

𝑃3(𝑥) =
(𝑥 −  1)(𝑥 −  2)( 𝑥 −  3)

(0 −  1)(0 −  2)(0 −  3)
 × 1 = −

1

6
𝑥3 + 𝑥2 −

11

6
𝑥 + 1 

             +
(𝑥 − 0)(𝑥 −  2)( 𝑥 −  3)

(1 −  0)(1 −  2)(1 −  3)
× 4 = 2𝑥3 − 10𝑥2 + 12𝑥 

            +
(𝑥 −  0)( 𝑥 −  1)( 𝑥 −  3)

(2 −  0)(2 −  1)(2 −  3)
× 8 = −4𝑥3 + 16𝑥2 − 12𝑥 

             +
(𝑥 −  0)( 𝑥 −  1) ( 𝑥 −  2)

(3 −  0)(3 −  1)(3 −  2)
× 14 =

7

3
𝑥3 − 7𝑥2 +

14

3
𝑥     

 𝑃3(𝑥) =
1

6
𝑥3 +

17

6
𝑥 + 1                                 

Notes 1: We need to check that the resulting polynomial passes exactly through all these 

points. 
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Notes 2: It is necessary to verify that each elementary polynomial satisfies the point that 

corresponds and is equal to zero at all other interpolated points. 

Notes 3: Lagrange polynomial is the sum of all elementary polynomials. 

Example 2  

As we said earlier, we can also approximate a function to a polynomial to simplify its study. 

Let us take 𝑓(𝑥) =
1

𝑥
 as an example and look at what the polynomial that corresponds to this 

function looks like on the interval [2, 4] interpolating the function at the points represented in 

the table below. 

𝑥𝑖 2 2.5 4 

𝑦𝑖 0.5 0.4 0.25 

 

Solution : 

𝑃2(𝑥) =
1

20
𝑥2 −

51

120
𝑥 +

23

20
 

The resulting polynomial is only an approximation, so an error was made during the 

approximation of a value belong to [𝑎, 𝑏]. To evaluate this error made on calculating 𝑥, we 

can use Taylor's development. 

|𝑓(𝑥) − 𝑝𝑛(𝑥)| =
(𝑥 − 𝑥0) × (𝑥 − 𝑥1) × … (𝑥 − 𝑥𝑛)

(𝑛 + 1)!
𝑓[𝑛+1](𝛿) = |𝑅(𝑥)| 

𝑓(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐) × (𝑥 − 𝑐) + 𝑓′′(𝑐) ×
(𝑥 − 𝑐)2

2!
+ ⋯ … . . 𝑓[𝑛](𝑐) ×

(𝑥 − 𝑐)𝑛

𝑛!

+ 𝑓[𝑛+1](𝑐) ×
(𝑥 − 𝑐)𝑛+1

(𝑛 + 1)!
 

We can write, 

𝑓(𝑥) = 𝑝𝑛(𝑥) + 𝑅(𝑥) 

𝑅(𝑥): Represents the error can be made for approximating the function 𝑓(𝑥) to the 

polynomial 𝑝𝑛(𝑥). 

𝑅(𝑥) = 𝑓[𝑛+1](𝑐) ×
(𝑥 − 𝑐)𝑛+1

(𝑛 + 1)!
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We should maximize the error, 

- 𝑓[𝑛+1](𝑐) → max
𝛿∈[𝑎;𝑏]

[ (𝑓[𝑛+1](𝛿)] 

- max
(𝑥−𝑐)𝑛+1

(𝑛+1)!
 →  

(𝑏−𝑎)𝑛+1

(𝑛+1)!
. 

The maximum error can be made in approximating is given by 

|𝑅(𝑥)| ≤ 𝑚𝑎𝑥[ (𝑓[𝑛+1](𝛿)] ×
(𝑏 − 𝑎)𝑛+1

(𝑛 + 1)!
. 

𝑚𝑎𝑥[ (𝑓[𝑛+1](𝛿)] is the maximum value of the nth +1 derivative of the function f on the 

interval [𝑎. 𝑏]. 

For the example before 

𝑃2(3) =
1

20
32 −

51

120
3 +

23

20
= 0.325                  (1) 

𝑓(3) =
1

3
= 0.333                                          (2) 

E=|𝑓(3) − 𝑃2(3)| = 0.008 

𝑓(𝑥) =
1

𝑥
→ 𝑓′(𝑥) =

−1

𝑥2
→ 𝑓′′(𝑥) =

2

𝑥3
⟶ 𝑓′′′(𝑥) =

−6

𝑥4
 

𝑓′′′(2) =
−6

24
= −0.3750 

𝑓′′′(4) =
−6

44
= −0.0234 

𝑀 = 0.3750 

 
1

(𝑛 + 1)ǃ
∏(x − x𝑖)

𝑛

𝑖=0

=
(3 − 2)(3 − 2.5)(3 − 4)

4!
= −0.0208 

|𝐸𝑛(𝑥)| = 0.375 × 0.083 = 0.078 

 

 

 

 

 



12 
 

2.3.3 Newton polynomial 

As we saw in the previous paragraph: 

 The polynomial that passes through one point (𝑥0, 𝑦0) is a polynomial of order 0 given 

by: 

𝑃0(𝑥) = 𝑦0 = 𝑎0 

 The polynomial that passes through the two points (𝑥0, 𝑦0) and (𝑥1, 𝑦1) is a 

polynomial of order 1 given by: 

𝑃1(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) 

  The polynomial that passes through the three points (𝑥0, 𝑦0), (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is a 

polynomial of order 2 given by: 

 

𝑃2(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥2) 

In the general case, if we have n+1 points, Newton's polynomial will be of order n, given by: 

𝑃n(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1) … +𝑎𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1) … (𝑥 − 𝑥𝑛−1) 

Split difference method is used to find the coefficients ai: 

We know that 𝑎0 =  𝑦0. We would like to know the value of  𝑎1.At 𝑥 = 𝑥1, we have 

𝑃1(𝑥1) = 𝑦0 + 𝑎1(𝑥1 − 𝑥0) = y1, then 

𝑎1 =
𝑦1− 𝑦0

𝑥1− 𝑥0
= 𝑓[𝑥0 − 𝑥1] = ∆𝑦1 is the first derivative difference of order 1. 

The divided differences of order 1 are given by: 

𝑓[𝑥0 − 𝑥1] = ∆𝑦1 =
𝑦1 −  𝑦0

𝑥1 −  𝑥0
 

𝑓[𝑥1 − 𝑥2] = ∆𝑦2 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

. 

. 

. 

𝑓[𝑥𝑖−1 − 𝑥𝑖] = ∆𝑦𝑖 =
𝑦𝑖 −  𝑦𝑖−1

𝑥𝑖 −  𝑥𝑖−1
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The divided differences of order 2 are given by: 

𝑓[𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1 ] = ∆𝑦𝑖
2 =

∆𝑦𝑖+1 − ∆𝑦𝑖

𝑥𝑖+1 − 𝑥𝑖−1
=

𝑦𝑖+1 −  𝑦𝑖

𝑥𝑖+1 −  𝑥𝑖
−

𝑦𝑖 −  𝑦𝑖−1

𝑥𝑖 −  𝑥𝑖−1

𝑥𝑖+1 − 𝑥𝑖−1
 

 

𝑎2 is the first divided difference term of order 2, 

𝑎2 = 𝑓[𝑥0, 𝑥1, 𝑥2 ] = ∆𝑦0
2 =

∆𝑦1 − ∆𝑦0

𝑥2 − 𝑥0
=

𝑦2 − 𝑦1

𝑥2 −  𝑥0
−

𝑦1 −  𝑦0

𝑥1 −  𝑥0

𝑥2 − 𝑥0
 

The divided differences of order n are given by: 

𝑓[𝑥0, 𝑥1, … 𝑥𝑛 ] = ∆𝑦𝑖
𝑛 =

∆𝑦𝑖+1
𝑛 − ∆𝑦𝑖

𝑛

𝑥𝑖+1 − 𝑥𝑖−1
 

𝑎𝑖 is given by the first term of the divided difference of order i, 

𝑎𝑖 = ∆𝑦1
𝑛 =

∆𝑦2
𝑛 − ∆𝑦1

𝑛

𝑥𝑛 − 𝑥0
 

To better illustrate the idea, we give the following table: 
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x0 y0 

      

  

∆𝑦1
1 =

𝑦1 −  𝑦0

𝑥1 −  𝑥0
 

     
x1 y1 

 

∆𝑦1
2 =

∆𝑦1 − ∆𝑦0

𝑥2 − 𝑥1
 

    

  

∆𝑦2
1 =

𝑦2 −  𝑦1

𝑥2 −  𝑥1
 

 

∆𝑦1
3 =

∆𝑦1
2 −  ∆𝑦0

2

𝑥4 −  𝑥0
 

   
x2 y2 

 

∆𝑦2
2 =

∆𝑦2 − ∆𝑦1

𝑥3 − 𝑥0
 . 

  

 

  

∆𝑦3
1 =

𝑦3 −  𝑦2

𝑥3 −  𝑥2
 

 

. .  
 

x3 y3 . ∆𝑦3
2 =

∆𝑦3 − ∆𝑦2

𝑥4 − 𝑥0
 . .                      .   .  . ∆𝑦1

𝑛−1 =
∆𝑦2 −  ∆𝑦1

𝑥𝑛 −  𝑥0
 

. 

 

. . ∆𝑦𝑛−2
3 =

∆𝑦𝑛−2− ∆𝑦𝑛

𝑥𝑛− 𝑥0
. 

 

  

. 

 

. 

 

∆𝑦𝑛−1
2 =

∆𝑦𝑛−1 −  ∆𝑦𝑛

𝑥𝑛 −  𝑥0
 

 

    

  

∆𝑦𝑛
1 =

𝑦𝑛 −  𝑦𝑛−1

𝑥𝑛 − 𝑥𝑛−1
 

     xn yn 
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Example 1 

We would like to find the newton polynomial that interpolates values issued from a physical 

experiment, which are represented in the table. 

x 0 1 2 3 

y 1 2 9 28 

First, we have to write the data in vertical way. We have four point, and then the polynomial 

should be of orders three. 

xi yi    

0 1    

  𝟐 − 𝟏

𝟏 − 𝟎
= 𝟏 

  

1 2  𝟕 − 𝟏

𝟐 − 𝟎
= 𝟑 

 

  𝟗 − 𝟐

𝟐 − 𝟏
= 𝟕 

 𝟔 − 𝟑

𝟑 − 𝟎
= 𝟏 

2 9  𝟏𝟗 − 𝟕

𝟑 − 𝟏
= 𝟔 

 

  𝟐𝟖 − 𝟗

𝟑 − 𝟐
= 𝟏𝟗 

  

3 28    

 

𝑃n(𝑥) = 1 + 1 × (𝑥 − 0) + 3 × (𝑥 − 0)(𝑥 − 1) + 1 × (𝑥 − 0)(𝑥 − 1)(𝑥 − 2) 

𝑃n(𝑥) = 𝑥3 + 1 

Example 2 

Find the newton polynomial that interpolates values in the following table. 

x 0 1 2 3 

y 1 2 1 10 

 

Solution  

𝑃n(𝑥) = 2𝑥3 − 7𝑥2 + 6𝑥 + 1  



14 
 

Note : we could evaluate the error made through the approximation by the same formula used 

in Lagrangian interpolation. 


