Mila University Center Institute of Mathematics and Computer Science Department of Mathematics Ist Year LMD

DIRECTED WORK SERIES NO. 3 (THE FILES)

Module: Algorithmic and data structures 2

Academic year: 2023/2024

Exercise 1 :

Consider the following record type: Type Structure Student Number: integer; Last name, First name: string; Average: real; End Structure;

Let T be an array of N students (N <=100).

Write an algorithm allowing you to copy all the admitted students belonging to T into an ADMIS file of student type. A student is admitted if his average is greater than or equal to 10.

Exercise 2:

Consider the following record types:

Ŭ	71	
Туре	Structure Student	Structure TDiscipline
structure Date	Last name, First name : string;	Discipline: string ;
Day, month, year: integer;	Date_Birth : Date;	Faculty: string;
End Structure;	Sector : TDiscipline ;	End Structure;
	End Structure;	

Let **FStudent** be a file of students.

Write an algorithm that allows you to:

- Complete the **FStudent** file .

- Split the **FStudent** file into two files, F1 (students from the "MI" faculty) and F2 (students from other faculties).

Exercise 3:

Consider the following type: Type Structure Product Code: Integer; Designation: String; Price: real; End Structure; Let **F** be a product file.

Write a Function that checks if the elements of \mathbf{F} are sorted in ascending order of their Code.