Electric Flux

•*Flux :*The rate of flow through an **area** or **volume**. It can also be viewed as the product of an area and the vector field across the area.

•*Electric Flux:* The rate of flow of an electric field through an area or volume represented by the number of E field lines penetrating a surface.

•*Electric Flux:* is the product of the magnitude of the electric field and the surface area, *A*, perpendicular to the field.

 $\cdot \Phi_F = EA$

 \cdot Units: $N \cdot m^2 / C$

Electric Flux

We define the electric flux Φ , of the electric field E , through the surface A, as:

Where:

 \triangle is a vector normal to the surface (magnitude A, and direction normal to the surface).

Electric Flux

The flux also depends on orientation

 $\Phi = E$. $A = E A \cos \theta$

 θ is the angle between **E** and <u>A</u>

The number of field lines through the tilted surface $\sqrt{}$ equals the number through its projection. Hence, the flux through the tilted surface is simply given by the flux through its projection: $E(A\cos\theta)$.

Flux of a Uniform Electric Field

• The flux $\Phi_F = \vec{E} \cdot \vec{A} = EA$.

(b) Surface is tilted from a face-on orientation by an angle ϕ : • The angle between \vec{E} and \vec{A} is ϕ .

• The flux $\Phi_E = \vec{E} \cdot \vec{A} = EA \cos \phi$.

(c) Surface is edge-on to electric field: \cdot \vec{E} and \vec{A} are perpendicular (the angle

between \vec{E} and \vec{A} is $\phi = 90^{\circ}$).

• The flux
$$
\Phi_E = \mathbf{E} \cdot \mathbf{A} = E \mathbf{A} \cos 90^\circ = 0
$$
.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

What if the surface is curved, or the field varies with position ??

1. We divide the surface into small regions with area dA $\Phi = \mathbf{E} \cdot \mathbf{A}$

Electric flux has SI units of volt metres (V m), or, equivalently, newton metres squared per coulomb (N m² C⁻¹). Thus, the SI base units of electric flux are $kg·m³·s⁻³·A⁻¹$.

Flux Through a Cube

- Uniform electric field $\mathbf{E} = (E, 0, 0)$
- The flux through the surfaces 3, 4, 5, and 6 equal zero \Rightarrow Side 1: $\Phi = -E l^2$ Side 2: $\Phi = E l^2$ For the other sides, $\Phi = 0$ Therefore, $\Phi_{total} = 0$
- The net flux over all six faces is

E2004 Thompson - Brooks/Ooks

$$
\Phi_E = -EI^2 + El^2 + 0 + 0 + 0 + 0 = 0
$$

Few examples on calculating the electric flux

-Find electric flux

 $E = 2 \cdot 10^3 [N/C]$

In the case of a closed surface

$$
\Phi = \int d\Phi = \oint \underline{F} \cdot d\underline{A} = \begin{bmatrix} \sum_{inside} q \\ \sum_{i} q \end{bmatrix}
$$

The loop means the integral is over a closed surface.

Definitions

• *Symmetry*:

The balanced structure of an object, the halves of which are alike

• *Closed surface:*

A surface that divides space into an inside and outside region, so one can't move from one region to another without crossing the surface

• *Gaussian surface:*

A hypothetical closed surface that has the same symmetry as the problem we are working on note this is not a real surface it is just an mathematical one

Gauss' Law

1777 – 1855

• Gauss' Law: electric flux through any closed surface is proportional to the net charge *Q* inside the surface

$$
\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\varepsilon_0}
$$
\n
$$
1/\varepsilon_0 = 4 \pi k_e
$$

- $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$: permittivity of free space
- The area in *Φ* is an imaginary Gaussian surface (does not have to coincide with the surface of a physical object)

Gauss's Law

Gauss's Law is always true, but is only useful for certain very simple problems with great symmetry.

Gauss' Law

· *Gauss' Law* depends on the enclosed charge only

$$
\Phi = \oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon}
$$

- 1. If there is a positive net flux there is a net positive charge enclosed
- 2. If there is a negative net flux there is a net negative charge enclosed
- 3. If there is a zero net flux there is no net charge enclosed
- Gauss' Law works in cases of symmetry

Applying Gauss's Law: Field Due to a Plane of Charge

Gauss's law is useful only when the electric field is constant on a given surface

Infinite sheet of charge

- The uniform field must be perpendicular to the sheet and directed either toward or away from the sheet
- Use a cylindrical Gaussian surface
- The flux through the ends is EA and there is no field through the curved part of the surface
- Surface charge density $σ = Q/A$

1. Select Gauss surface In this case a cylindrical

2.Calculate the flux of the electric field through the Gauss surface $\Phi = 2 E A$

3. Equate $\Phi = \frac{q_{\text{encl}}}{\epsilon_0}$ $2EA = q_{encl}/\varepsilon_0$

4.Solve for E $E = q_{encl} / 2 A \varepsilon_0 = \sigma / 2 \varepsilon_0$ with $\sigma = (q_{encl}/A)$

Field Due to a Line of Charge

Electric field produced by a point charge

- A positive point charge *q* is located at the center of a sphere of radius *r*
- The magnitude of the electric field everywhere on the surface of the sphere is $E = k_e q / r^2$
- $A_{\text{sphere}} = 4\pi r^2$

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = E \oint dA
$$

$$
= k_e \frac{q}{r_f^2} \cdot 4\pi r_f^2 = 4\pi k_e q = \frac{q}{\varepsilon_0}
$$

Electric Field of a Charged Thin Spherical Shell

- The electric field **inside** the shell is *zero*
- The calculation of the field **outside** the shell is identical to that of a point charge

$$
E = \frac{Q}{4\pi r^2 \varepsilon_o} = k_e \frac{Q}{r^2}
$$

Example 08

- A sphere with centre *O* and radius *R* is charged in volume with charge density $\rho = \rho_0 \cdot r / R$ (ρ_0 is constant).
- 1) What is the total charge inside the sphere ?
- 2) Apply Gauss's theorem to determine the electric field at any point *M* in space.
- 3) Deduce the expression for the potential*V(r)* at any point in space.

Problem: Sphere of Charge Q

Acharge Q is uniformly distributed through a sphere of radius R. What is the electric field as a function of r ?. Find \mathbf{E} at r_1 and r_2 .

