المحور 04: الارتباط الذاتي للأخطاء

<mark>المحاضرة 05: تابع</mark>

5- طرق تقدير معامل الارتباط الذاتي للأخطاء:

هناك العديد من الطرق لتقدير معامل الارتباط الذاتي، نذكر من أهمها:

5- 1- طريقة COCHRANE-OREUTTE:

قدم كلل من COCHRANE و OREUTTE بحثا مشتركا سنة 1949 حول طريقة تقدير معامل الارتباط الذاتي ρ، حيث اقترحا أن يتم تقديره وفق العلاقة التالية:

$$\hat{\rho} = \frac{\sum e_t \cdot e_{t-1}}{\sum e_{t-1}^2}$$

. $\mathbf{e}_{t-1} = \mathbf{Y}_{t-1} - \hat{\mathbf{Y}}_{t-1}$ و $\mathbf{e}_t = \mathbf{Y}_t - \hat{\mathbf{Y}}_t$ عنت: \mathbf{e} : تمثل بواقي تقدير النموذج، أي:

5-2- طربقة Durbin-Watson:

حسب هذه الطريقة يتم تقدير معامل الارتباط الذاتي p من خلال احصائية Durbin-Watson، والتي يرمز لها عادة بالرمز DW ، والتي تعطى بالعلاقة التالية:

$$DW = 2 \cdot (1 - \hat{\rho})$$

وبالتالي يمكن تقدير معامل الارتباط الذاتي كما يلي:

$$\hat{\rho} = 1 - \frac{DW}{2}$$

5- 3- طريقة THEIL-NAGAR:

وهي طريقة مطورة لطريقة Durbin-Watson في تقدير معامل الارتباط الذاتي ρ، إذ أخذ الباحثان THEIL وNAGAR في بحثهما سنة 1961 عدد المتغيرات المستقلة k وحجم العينة n في تقدير هذا المعامل، من خلال الصيغة التالية:

$$\hat{\rho} = \frac{n^2 \left(1 - \frac{DW}{2}\right) + (k+1)^2}{n^2 - (k+1)^2}$$

6- طرق معالجة مشكلة الارتباط الذاتي

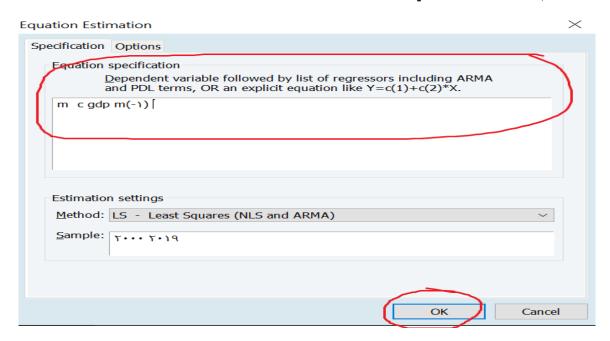
كما سبق وأن تطرقنا في المحاضرة السابقة، فإن وجود الارتباط الذاتي للاخطاء في نتائج التقدير يعتبر مشكلة إذ لا يمكن استخدام نتائج التقدير في وجود الارتباط الذاتي لأغراض التنبؤ ورسم السياسات قبل تخليصها من هذه المشكلة. من الممكن وجود الارتباط الذاتي يرجع إلى عدة عوامل منها شكل النموذج المستخدم أو إهمال بعض المتغيرات المهمة. لذلك يجب التخلص من هذه المشكلة من خلال استخدام الطرق المختلفة المعدة لهذا الغرض. نذكر من بينها 3 طرق:

6- 1- طريقة تأخير المتغير التابع بفترة واحدة (Lagged Variable):

في الغالب يلجأ الباحثون إلى إدراج المتغير التابع مؤخر بفترة واحدة كمتغير مستقل في النموذج لغرض إزالة الارتباط الذاتي للأخطاء من النموذج.

$$Y_t = \beta_1 + \beta_2 X_{2t} + \dots + \beta_k X_{kt} + \gamma Y_{t-1} + \varepsilon_t$$

ففي مثالنا السابق، السلسلة تبدأ من سنة 2000 للمتغير التابع والمستقل، يمكن إدخال بيانات المتغير التابع لسنة 1999 مقابل المتغير التابع لسنة 2000. ولكن في أغلب الأحيان لا توجد بيانات لسنة سابقة عن السلسلة المستخدمة. في هذه الحالة يمكن للباحث أن يضحى بمشاهدة واحدة في مقابل التخلص من أثر الارتباط الذاتي.


مثال تطبيقي (نفس المثال السابق): رأينا سابقا أن عند استخدام إختبار DW أن الارتباط الذاتي موجود، لذلك سوف نقوم بإزالته. نستخدم طريقة تأخير المتغير التابع لفترة واحدة:

السنة	GDP_t	M_t	M_{t-1}	السنة	GDP_t	M_t	M_{t-1}
2000	506	23.2	-	2010	982.4	58.5	52.9
2001	523.3	23.1	23.2	2011	1063.4	64	58.5
2002	563.8	25.2	23.1	2012	1171.1	75.9	64
2003	594.7	26.4	25.2	2013	1306.6	94.4	75.9
2004	635.7	28.4	26.4	2014	1412.9	131.9	94.4
2005	688.1	32	28.4	2015	1528.8	126.9	131.9
2006	753	37.7	32	2016	1702.2	155.4	126.9
2007	796.3	40.6	37.7	2017	1899.5	185.8	155.4
2008	868.5	47.7	40.6	2018	2127.6	217.5	185.8
2009	935.5	52.9	47.7	2019	2368.5	260.9	217.5

نقوم بتقدير العلاقة:

$$Y_t = \beta_1 + \beta_2 X_{2t} + \dots + \beta_k X_{kt} + \gamma Y_{t-1} + \varepsilon_t$$

على برنامج EViews يتم تقدير العلاقة كمايلي:

تظهر نتائج كمايلي:

Dependent Variable: M Method: Least Square: Date: 03/04/24 Time: Sample (adjusted): 200 Included observations:	s 04:30 01 2019	ments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-26.93617	10.10539	-2.665526	0.0169
GDP	0.054502	0.021242	2.565810	0.0207
M(-1)	0.692369	0.197459	3.506388	0.0029
R-squared	0.989213	Mean depen	dent var	88.69474
Adjusted R-squared	0.987865	S.D. depend	ent var	71.53424
S.E. of regression	7.880195	Akaike info c	7.110522	
Sum squared resid	993.5596	Schwarz crite	7.259644	
Log likelihood	-64.54996	Hannan-Quinn criter.		7.135759
F-statistic	733.6457	Durbin-Wats	on stat	2.392572
Prob(F-statistic)	0.000000			

ويظهر من نتائج التقدير أن DW= 2.39، هذه القيمة عند مستوى معنوية 5% تقع بين الحدين 2 و du -4 عند حجم عينة 19.

$$2 < DW = 2.39 < 4 - du$$
$$2 < 2.39 < 2.6$$

وبذلك نستنتج غياب الارتباط الذاتي للأخطاء.

6- 2- طريقة شبه الفروقات الأولى:

تعتمد هذه الطريقة على تحويل البيانات الأصلية إلى بيانات جديدة تمكننا من الحصول على نموذج يكون المتغير العشوائي فيه خاضع لفرضيات تطبيق المربعات الصغرى العادية، وبالتالي يمكن استخدام هذه الطريقة في تقدير المعالم.

في حالة وجود ارتباط ذاتي بين الأخطاء فإننا نستعمل الطريقة التالية للتخلص من هذه المشكلة:

لنفترض أن النموذج الأصلي يأخذ الصيغة التالية (نأخذ نموذج خطي بسيط لتسهيل الفهم):

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \dots \dots (1)$$
$$\varepsilon_i = \rho \varepsilon_{i-1} + u_i$$

نكتب النموذج (1) في الفترة السابقة:

$$Y_{i-1} = \beta_0 + \beta_1 X_{i-1} + \varepsilon_{i-1} \dots \dots (2)$$

بضرب طرفي المعادلة (2) في
$$ho$$
 والطرح من (1) نحصل على النموذج التالي: $Y_i^*=eta_0(1-
ho)+eta_1X_i^*+arepsilon_{i-1}\dots\dots(3)$

حيث:

$$Y_i^* = Y_i - \rho Y_{i-1} \dots \dots (4)$$

$$X_i^* = X_i - \rho X_{i-1} \dots \dots (5)$$

$$\mu_i = \varepsilon_i - \rho \varepsilon_{i-1}$$

النوذج المحول يصبح:

$$Y_i^* = \beta_0^* + \beta_1^* X_i^* + \mu_i \dots \dots (6)$$

حيث:

$${\beta_0}^* = {\beta_0}(1-\rho)$$
 , ${\beta_1}^* = {\beta_1}$

وبذلك يمكننا تحويل النموذج الذي به الارتباط الذاتي إلى نموذج لا يحتوي على إرتباط ذاتي بين الأخطاء وبذلك يمكن استخدام طريقة المربعات الصغرى العادية في إيجاد تقديرات المعالم وهي نفس معالم النموذج الأصلي ما عدا $eta_0^* = eta_0(1ho)$.

يتم تطبيق طريقة المربعات العادية على البيانات المحولة X_i^* و X_i^* ، حيث المشاهدة الأولى يتم تعويضها بن يتم تطبيق طريقة المربعات العادية على البيانات المحولة X_i^* بينما المشاهدات الأخرى المتبقية فهي الفرق بين المشاهدات الأصلية في كل نقطة زمنية وحاصل ضرب معامل الارتباط $\hat{\rho}$ في قيمة المتغيرات السابقة كالتالي:

$$Y_i^* = Y_i - \rho Y_{i-1}$$
$$X_i^* = X_i - \rho X_{i-1}$$

والنموذج المقدر سوف يكون من الشكل:

$$Y_i^* = B_0^* + \beta_1^* X^*$$

مثال تطبيقي (نفس المثال السابق):

السنة	GDP_t	M_t	GDP_t^*	M_t^*	السنة	GDP_t	M_t	GDP_t^*	M_t^*
2000	506	23.2	351.151	16.1	2010	982.4	58.5	308.84	20.412
2001	523.3	23.1	158.98	6.396	2011	1063.4	64	356.072	21.88
2002	563.8	25.2	187.024	8.568	2012	1171.1	75.9	405.452	29.82
2003	594.7	26.4	188.764	8.256	2013	1306.6	94.4	463.408	39.752
2004	635.7	28.4	207.516	9.392	2014	1412.9	131.9	472.148	63.932
2005	688.1	32	230.396	11.552	2015	1528.8	126.9	511.512	31.932
2006	753	37.7	257.568	14.66	2016	1702.2	155.4	601.464	64.032
2007	796.3	40.6	254.14	13.456	2017	1899.5	185.8	673.916	73.912
2008	868.5	47.7	295.164	18.468	2018	2127.6	217.5	759.96	83.724
2009	935.5	52.9	310.18	18.556	2019	2368.5	260.9	836.628	104.3

نتائج التقدير بالمتغيرات المحولة جاءت كمايلي:

Dependent Variable: M_ Method: Least Squares Date: 03/06/24 Time: 19:30

Sample: 2000 2019 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-22.42777	3.912256	-5.732695	0.0000
GDP_	0.141458	0.008965	15.77915	0.0000
R-squared	0.932580	Mean depen	32.95500	
Adjusted R-squared	0.928834	S.D. depend	28.97108	
S.E. of regression	7.728600	Akaike info c	7.022372	
Sum squared resid	1075.163	Schwarz criterion		7.121945
Log likelihood	-68.22372	Hannan-Quinn criter.		7.041810
F-statistic	248.9816	Durbin-Watson stat		2.573800
Prob(F-statistic)	0.000000			

ومن خلال نتائج التقدير، يتبين أنّ $d_u = 1.41 > 0$ عند 20 مشاهدة وبمستوى معنوية 5% وبذلك نلاحظ غياب الارتباط الذاتي للأخطاء في نتائج التقدير.

6- 2- طريقة إضافة المتغير الوهمى:

وجود الارتباط الذاتي قد يكون نتيجة إهمال بعض المتغيرات المهمة في النموذج. في هذه الطريقة يتم وصف النموذج بإدخال متغيرات تم اهمالها. فعلى سبيل، لنفرض أن الفترة 2005 – 2019 عرفت تحول في الاقتصاد مثل ارتفاع فاتورة الاستيراد (M) مع زيادة في الناتج الداخلي الخام (GDP) نتيجة لارتفاع أسعار البترول، فيمكن إدخال متغير وهمي (Dummy Variable) تكون قيمته مساوية لـ 1 خلال الفترة 2005- 2019 ومساوية لـ 0 فيما عدا ذلك:

السنة	GDP_t	M_t	DV	السنة	GDP_t	M_t	DV
2000	506	23.2	0	2010	982.4	58.5	1
2001	523.3	23.1	0	2011	1063.4	64	1
2002	563.8	25.2	0	2012	1171.1	75.9	1
2003	594.7	26.4	0	2013	1306.6	94.4	1
2004	635.7	28.4	0	2014	1412.9	131.9	1
2005	688.1	32	1	2015	1528.8	126.9	1
2006	753	37.7	1	2016	1702.2	155.4	1
2007	796.3	40.6	1	2017	1899.5	185.8	1
2008	868.5	47.7	1	2018	2127.6	217.5	1

2009	935.5	52.9	1	2019	2368.5	260.9	1

نتائج التقدير بهذه الطريقة جاءت كما هو مبين في الجدول التالي:

Dependent Variable: M Method: Least Squares Date: 03/06/24 Time: 20:07 Sample: 2000 2019

Sample: 2000 2019 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-51.53581	4.036504	-12.76744	0.0000
GDP	0.135994	0.003871	35.13439	0.0000
DV	-20.72958	4.858886	-4.266323	0.0005
R-squared	0.989823	Mean depen	85.42000	
Adjusted R-squared	0.988626	S.D. depend	71.14985	
S.E. of regression	7.588070	Akaike info c	7.028513	
Sum squared resid	978.8397	Schwarz criterion		7.177873
Log likelihood	-67.28513	Hannan-Quinn criter.		7.057669
F-statistic	826.7355	Durbin-Wats	1.561035	
Prob(F-statistic)	0.000000			

ومن خلال نتائج التقدير، يتبين أنّ 2 > 1.56 < DW = 1.54 عند 20 مشاهدة وبمستوى معنوية 5%، وهي تقطع في منطقة الرفض، بمعنى غياب الارتباط الذاتي للأخطاء في نتائج التقدير. ويلاحظ أن كل المتغيرات المدرجة معنوية.