Incrtain decesion

GUETTICHE Mourad 2023/2024

1

Marchov chains

- A Markov chain describes a system whose state changes over time.
- The changes are not completely predictable, but rather are governed by probability distributions.

- The future of the system depends only to its present state, and not the path by which the system got to this latter.

I. Marchov chains

Definitions 1

A time-homogeneous Markov chain is a discretetime stochastic process $(X_n, n \ge 0)$ with values in a finite or countable set S (the state space) such that:

 $P(X_{n+1}=j/X_n=i,X_{n-1}=i_{n-1},X_{n-2}=i_{n-2},...,x_0=i_0)=P(X_{n+1}=j/X_n=i)=P_{ij}.$ for every n ≥ 0 and j, i, i_{n-1}, ..., i₁, i₀ ∈ S.

I. Marchov chains

The **transition matrix** of the chain is the matrix $P = (p_{ij}) i, j \in S$ defined as $p_{ij} = P(X_{n+1} = j | X_n = i)$. It satisfies the following properties: $0 \le p_{ij} \le 1 \forall i, j \in S$ and $\sum_{j \in S} p_{ij} = \sum_{j \in S} P(X_{n+1} = j | X_n = i) = 1 \forall i \in S$ Note however that for a given $i \in S$, $\sum_{j \in S} p_{j}$, can be

Note however that for a given $j \in S$, $\Sigma_{i \in S} p_{ij}$ can be anything.

I. Markov chains

The transition graph of the chain is the oriented graph where vertices are states and an arrow from i to j exists if and only if $p_{ij} > 0$, taking value p_{ij} when it exists.

II. Distribution

The distribution of the Markov chain at time $n \ge 0$ is given by:

$$\pi_i^{(n)} = P(X_n = i) \ i \in S$$

and its initial distribution is given by

$$\pi_{i}^{(0)} = P(X_{0} = i) \ i \in S$$

For every $n \ge 0$, we have

$$\Sigma_{i\in S}\pi_i^{(n)}=1$$

II Distribution

The main question that will retain our attention for the first part of the course:

When does $\pi^{(n)}$ (the distribution at time n) converge at n $\rightarrow \infty$ to some limiting distribution π ?

Definition 2. we define m-step transition probabilities, for $m \ge 1$ and i, j $\in S$,

$$p_{ij}(m) = P(X_{n+m} = j | X_n = i) = P(X_m = j | X_0 = i)$$

How to compute these probabilities? Using the Chapman-Kolmogorov equations.

For m = 2, these lead.

$$p_{ij^2} = \Sigma_{k \in S} p_{ik} p_{kj} = (P \cdot P)_{ij} = (P^2)_{ij}$$

Indeed, we check that :

$$p_{ij}^{(2)} = P(X_2 = j | X_0 = i) = \sum_{k \in S} P(X_2 = j, X_1 = k | X_0 = i)$$

= $\sum_{k \in S} P(X_2 = j / X_1 = k, X_0 = i) * p(X_1 = k / X_0 = i)$

 $=\Sigma_{k\in S}p_{kj}*p_{ik}$

For higher values of m and $0 \le I \le m$, Chapman-Kolmogorov equations read:

$$\begin{split} p_{ij}^{(m)} &= \sum_{k \in S} p_{ik}^{(l)} p_{kj}^{(m-l)} = (P^{(l)} P^{(m-l)}) i j = (P^{m})_{ij} \\ p_{ij}^{(m)} &= P[X_m = j/x_0 = i] = \sum_{k \in S} P[X_m = j, X_1 = k/x_0 = i] = \\ \sum_{k \in S} P[X_m = j/X_1 = k, x_0 = i]^* P[X_1 = k/x_0 = i] \\ &= \sum_{k \in S} p_{ik}^{(l)} p_{kj}^{(m-l)}. \end{split}$$

Example 1

Consider a Markov chain given in previous section. Determine $P[X_3=F / X_0=S]$ and $P[X_5=R / X_2=F]$.

0.6	0.2	0.2		0.43	0.32	0.25		0.349	0.392	0.259
0.05	0.8	0.15		0.115	0.68	0.205		0.1645	0.608	0.2275
0.3	0.2	0.5		0.34	0.32	0.34		0.322	0.392	0.268
	Р			P ² ₃₂ =0.32		P ³ ₁₃ =0.259				

Definitions 3.

Two states i, $j \in S$ communicate ("i $\leftarrow \rightarrow j$ ") if $\exists n, m \ge 0$ such that $p_{ij}^{(n)} > 0$ and $p_{ji}^{(m)} > 0$.

A chain is said to be irreducible if all states communicate (a single class).

A state i is said to be absorbing if $p_{ii} = 1$.

Definitions 4.

Periodicity. For a state $i \in S$, define $d_i = gcd(\{n \ge 1 : p_{ii^n} > 0\})$. If $d_i = 1$, we say that state i is aperiodic. Else if $d_i > 1$, we say that state i is periodic with period d_i .

- In a given class, all states have the same period $d_i = d$.

- If there is at least on self-loop in the class ($\exists i \in S$ such as $p_{ii} > 0$), then all states in the class are aperiodic.

Definition 5

A state $i \in S$ is recurrent if $f_{_{ii}} = P(\exists n \geq 1 \text{ such that } X_n = i \mid X_0 = i) = 1$

(i.e., the probability that the chain returns to state i in finite time is equal to 1).

- A state i \in S is transient if $f_{ii} < 1$.

So a state is recurrent if and only if it is not transient.

Note in particular that it is not necessary that $f_{ii}=0$ for state i to be transient.

states 1, 2 and 3 are transient and 4 is recurrent.

- In a given class, either all states are recurrent, or all states are transient.

- In a finite chain, a class is recurrent iff there is no arrow leading out of it. (So a finite irreducible chain is always recurrent.)

V Stationary distribution

As a reminder, the distribution of the Markov chain $(X_n, n \ge 0)$ at time n is given by:

$$\pi_{j^{(n)}} = P(X_n = j), j \in S:$$

Let us compute for $j \in S$:

$$\pi_{j^{(n+1)}} = P(X_{n+1} = j) = \sum_{i \in S} P(X_{n+1} = j, X_n = i)$$

$$= \Sigma_{i \in S} P(X_{n+1} = j / X_n = i) P(X_n = i) = \Sigma_{i \in S} \pi_i^{(n)} p_{ij}$$

V Stationary distribution

In vector notation (considering $\pi^{(n)}$, $\pi^{(n+1)}$ as row vectors), this reads: $\pi^{(n+1)} = \pi^{(n)} P$

which further implies that $\pi^{(n)}=\pi^{(0)}\ P^n$. This motivates also the following definition:

Let $(X_n, n \ge 0)$ be a Markov chain with transition matrix P

A probability distribution $\pi=(\pi_i\ ,\ i\in S)$ is said to be a stationary distribution of the chain X if:

 $\pi_j = \Sigma_{i \in S} \pi_i p_{ij} \forall j \in S \text{ i.e. } \pi = \pi P.$

VI Ergodic Markov chain

Definition 6

A Markov chain is said to be ergodic if it is irreducible, aperiodic and recurrent.

Theorem (Ergodic theorem). Let X be an ergodic Markov chain. Then it admits a unique limiting and stationary distribution π , i.e., $\forall \pi$ ⁽⁰⁾, $\lim_{n \to \infty} \pi$ ⁽ⁿ⁾ = π and $\pi = \pi P$.

VII Stationary distribution

If π is stationary then $\pi P^n = \pi P P^{n-1} = \pi P^{n-1} = \dots = \pi$.

• In particular, if the initial distribution $\pi^{(0)} = \pi$, then $\forall n \ge 0$, $\pi^{(n)} = \pi^{(0)} P^n = \pi P^n = \pi$.

Remarks

we can see than π is a (left-)eigenvector of P .

Stationary distribution

The stationary distribution of the Markov chain previously mentioned is

 $\pi = [\frac{1}{4}, \frac{1}{2}, \frac{1}{4}].$