TD 03

Exercice 01:

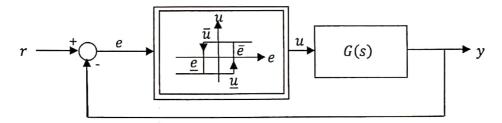
On considère un système de fonction de transfert en boucle ouverte H(s) définie par :

$$H(s) = \frac{100}{(s+1)(s+10)}$$

- 1. Calculer l'erreur statique du système placé dans une boucle à retour unitaire.
- 2. Déterminer la valeur de la marge de phase et en déduire la valeur du dépassement en boucle fermée.
- 3. Calculer la valeur du temps de montée en boucle fermée.

Exercice 02:

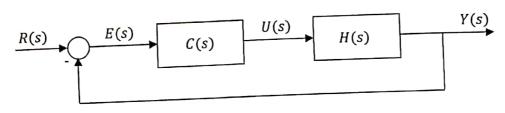
On considère un système de fonction de transfert en boucle ouverte H(s) définie par


$$H(s) = \frac{K}{s(s+10)}$$

Avec K > 0

- 1. Déterminer la valeur de K qui assure au système, placé dans une boucle à retour unitaire, un temps de montée égale à 0.1s.
- 2. Que vaut la marge de phase, dans ces conditions?
- 3. Quelle est alors la valeur du dépassement en boucle fermée ?

Exercice 03:

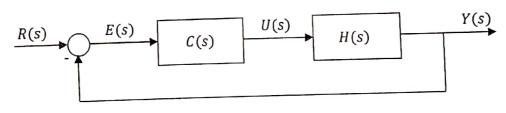

La commande de système décrit par la fonction de transfert $G(s) = \frac{1}{s}$ est effectuée par un régulateur tout-ou-rien avec hystérésis comme cela est schématisé dans la figue ci-dessous

La consigne r est un saut unité. Tracer l'évolution de la grandeur de commande u(t) et la grandeur commandée y(t). Sachant que $\bar{u}=1$, $\bar{u}=-1$, $\bar{e}=0.25$ et $\underline{e}=-0.25$.

Exercice 04:

On considère la boucle de régulation suivante :

avec :
$$H(s) = \frac{Ke^{-T_m s}}{(1+Ts)^2}$$
, $T_m = 5$, $K = 2$ et $T = 2$


- 1. Calculer G(s) la FTBF
- 2. On désire que le système bouclé se comporte comme un système de fonction de transfert.

$$G(s) = \frac{e^{-T_m s}}{1 + a_1 s + a_2 s^2}$$
, calculer la fonction de transfert $C(s)$ du régulateur.

3. On désire que la réponse indicielle du système bouclé présente un amortissement $\xi=0.7$ et le premier dépassement ait lieu au temps de premier maximum $t_{pic}=2sec$ (hors du temps de retard). Calculer les valeurs de a_1 et a_2 ; tracer l'allure de la réponse à un échelon unité.

Exercice 05:

Un système asservi à retour unitaire est représenté par le schéma bloc suivant :

Avec:
$$H(s) = \frac{10e^{-5s}}{(1+80s)^2}$$

- 1. Donner la marge de phase et la marge de gain de ce système.
- 2. On souhaite régler la marge de phase à 45° à l'aide d'un régulateur proportionnel C(s) = K.
 - Calculer K.
 - Donner la nouvelle marge de gain.
- 3. Donner l'erreur en position et l'erreur en vitesse avec ce réglage.