Institute of Science and Technologies

2nd year: Engineering of Proceeding

Numerical methods

2023/2024

Series N°2: Polynomial Interpolation

Exercise 1

The following table represents the results due to physical measurement.

Xi	1	2	3	4
f(x _i)	1	3	2	5

Interpolate these results with Newton and Lagrange polynomials.

Exercise 2

1- Construct the Lagrange interpolation polynomial of the function $y = sin(\pi x)$ using the points

 $x_0 = 0, x_1 = \frac{1}{6}, x_2 = \frac{1}{2}.$

2- Find the error made in calculation of $sin(\pi/8)$.

Exercise 3

Considering the function f(x) determined by the following table.

Xi	2	2.5	4
f(x _i)	0.5	0.4	0.25

- 1- Construct the Lagrange polynomial to interpolate the function y = f(x), and evaluate f(3).
- 2- Knowing that f(x) = 1/x, find the maximum error by replacing f(x) with the polynomial P(x).

Exercise 4

Using Newton's interpolation polynomial, complete the following table:

Xi	0	1	2	3	4
f(x _i)	1	3	9		81

Exercise 5

Consider the following points.

Xi	0	1	2	3
f(x _i)	0	2	36	252

- 1- Find the Lagrange polynomial passing through the first 3 points.
- 2- Find the Lagrange polynomial passing through the first 4 points and evaluate f(3.5). Is it possible to use the first polynomial to evaluate f(3.5)?
- 3- Find the approximations of f(1.5) using the polynomials obtained in 1 and 2. Discuss the results.