
University Center Abdelhafid
Boussouf -Mila-
Institute of Science and Technology

Computer Science 2

2023/2024

Dr. A. Djehiche Page 1

Chapter 2 : Indexed variables

Part II : Pointers

C Memory address:

C memory address is the space required for storing a declared variable, or more

appropriately, it is the location of bytes occupied by the variable data (value) in the

computer.

For example the statement int a=10 ; leads to :

1- A storage size with 4 bytes is reserved in the memory.

2- The value 10 of a is converted to binary as (10)10 =1010 and stored in the

reserved memory of a as follows

In a C program, the address memory is frequently presented, particularly

when using the scanf() function.

The statement scanf(%d, &b); means assigning a value to the address of b,

which is referred to as &b.

It should be noted that the address operator '&' can be used to access the

memory address of a variable.

Address Data
1992 1 0 1 0 1byte=8bits
1993
1994
1995

int a=10;

University Center Abdelhafid
Boussouf -Mila-
Institute of Science and Technology

Computer Science 2

2023/2024

Dr. A. Djehiche Page 2

Pinters in C :

Pointers are variables that store the address of another variable as their values. In c,

pointers it can be created as follows :

- Declaration : Pointer is declared in this way

pointer_data-type* pointer_name ;

The only difference between pointer and variable declarations is the astrisic (*).

Example :

int* p ;

This line means that a pointer is created but it points to a random

adress memory. The declared pointer keeps pointing to an existing and

unknown address in memory, and if it is not specified, a programming

issue may arise. To this reason, a care should be done in pointers

manipulation.

- Initialization: the pointer is initialized by using address operator ‘&’ as

int a=5, *pa ;

pa=&a ;

This indicates that the pointer pa has been assigned the address of a. Also, the

stored value of a is accessed using the dereference operator *.

The following example will clarify everything that has been mentioned in this section.

Example :

Program Output

#include <stdio.h>

int main() {
 int a=5, *pa;
 pa=&a;
 printf("The value of a=%d\n",a);
 printf("The address of a: %p\n", &a);
 printf("The value of a=%d\n", *pa);
 printf("The address of a: %p", pa);

 return 0;
}

The value of a=5
The address of a= 0x7ffe665a0c14
The value of a=5
The address of a= 0x7ffe665a0c14

University Center Abdelhafid
Boussouf -Mila-
Institute of Science and Technology

Computer Science 2

2023/2024

Dr. A. Djehiche Page 3

From this example, the importance of pointers also becomes clear, as they play two

roles. On the one hand, they store the address of the variable, and on the other hand,

they can access the value of the variable they pointed to. Even beyond that, the value of

the variable it can be changed through its pointer.

Example:

Program Output

#include <stdio.h>

int main() {
 int a=5;
 int* pa;
 pa=&a;
 *pa=10;
 printf("a=%d\n", a);
 return 0;
}

a=10

Pointers and functions:

Pointers are useful tools to deal with functions. It can be pointed to the function itself or

it can be used as a parameter to that function. In most cases pointers are used to pass

addresses to function parameters and this technique is called pass by reference. This it

can be explored in the programs as follows

Example 1:

Program Output

#include <stdio.h>
void fg(int *q)
{
 printf("%p\n%d", q,*q);
}
int main() {
 int a=5, *p;
 p=&a;
 printf("%p\n",p);
 fg(p);
 return 0;
}

0x7ffd26425cf4
0x7ffd26425cf4
5

University Center Abdelhafid
Boussouf -Mila-
Institute of Science and Technology

Computer Science 2

2023/2024

Dr. A. Djehiche Page 4

Example 2:

Program Output

#include <stdio.h>
void swap(int *p1, int *p2)
{
 int temp;
 temp=*p1;
 *p1=*p2;
 *p2=temp;
 printf("x=%d\ny=%d\n",*p1,*p2);
}
int main() {
 int x=5,y=10;
 printf("The value of x and y before swap\n");
 printf("x=%d\ny=%d\n", x, y);
 printf("The value of x and y after swap\n");
 swap(&x,&y);
 return 0;
}

The value of x and y before swap
x=5
y=10
The value of x and y after swap
x=10
y=5

Pointers and arrays :

The pointer of an array can be shown as a second array, and the elements of this array

store the addresses of the first array elements to which it points.

Example :

Program Output

#include <stdio.h>

int main() {
 int i, j, a[4]={5,4,3,1};
 int* pa;
 pa=&a;
 printf("The address of a[] : %p\n\n", pa);
 printf("The addresses of array's elements:\n");
 for(i=0;i<4;i++)
 {
 printf("a[%d] : %p\n", i, pa+i);
 }
 printf("The values of array's elements:\n");
 for(j=0; j<4; j++)
 {
 printf("a[%d]=%d\n", j, *(pa+j));
 }
 return 0;
}

The address of a[] : 0x7ffe14beea20

The addresses of array's elements:

a[0] : 0x7ffe14beea20
a[1] : 0x7ffe14beea24
a[2] : 0x7ffe14beea28
a[3] : 0x7ffe14beea2c

The values of array's elements:

a[0]=5
a[1]=4
a[2]=3
a[3]=1

University Center Abdelhafid
Boussouf -Mila-
Institute of Science and Technology

Computer Science 2

2023/2024

Dr. A. Djehiche Page 5

From the previous example, it can be noted that:

 The address of array a[] corresponds to the address of a[0].

 The addresses are shifted by 4, and this is due to the fact that each element with

data-type integer reserves 4 bytes in memory.

 The method to access array elements is done in the same way as

 a[0]=*pa=5,
 a[1]=*(pa+1)=4,
 a[2]=*(pa+2)=3,
 a[3]=*(pa+3)=1

Pointers can only be used for one element in the array.

int c[]={1, 2, 3}, *pc;
pc=&c[1];

In this case the order becomes important, so pc+1 refers to the second element after

c[1] and pc-1 refers to the second element before c[1].

Example:

Program Output

#include <stdio.h>

int main() {
 int c[]={1, 2, 3}, *pc;
 pc=&c[1];
 printf("%d\n%d", *(pc-1), *(pc+1));
}

1
3

University Center Abdelhafid
Boussouf -Mila-
Institute of Science and Technology

Computer Science 2

2023/2024

Dr. A. Djehiche Page 6

Example:

Here is a simple example of printing elements for every given array using a pointer,

function, and an array.

Program Output

##include <stdio.h>
void funcar(int *pa, int size)
 {
 int i;
 for(i=1; i<size; i++)
 {
 printf("a[%d]=%d\n", i, *(pa+i));
 }
 }
int main() {
 int b, a[]={4, 2, 3, 12, 51}, *p;
 p=&a;
 b=sizeof(a)/sizeof(a[0]);
 funcar(p,b);
 return 0;
}

a[1]=2
a[2]=3
a[3]=12
a[4]=51

