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Chapter 1(part 2): Recursion 

 
1. Notion of the recursion: 

 

 In programming, recursion is a method that allows a sub- program 

(procedure or function) of calls herself.

 It is in their part body (instructions) we find a call to the  procedure (or 

function) itself.

Example: write an algorithm (function) to calculate the factorial     of a given 

integer N? 

a) Solution iterative (classic) : 

N !=1*2* 3*4*5*…  ...................... *(N-1)*N. 
 

Function fact (N: integer): integer; 

  R, i: integer; 

Begin 

R ← 1; 

For i = 1 to N do 

R ← R* i ; 

End For 

Return (R) ; 

END ; 
 

b) Solution recursive: 

N !=N*(N-1) ! 

 the function factorial “ fact ”  is defined as follows :
 

 If  N = 0 :  fact (0) = 1.

 If  N < > 0:  fact (N)=N*fact(N-1).

 In algorithmic, the function fact is defined as follow :

Function fact (N: integer): integer;    

   R: integer ; 

Begin 

If ( N = 0 ) then  

R ← 1; 

Else 

R ← N * fact (N - 1); 

End if 

Return (R) ; 

END; 
Application for 4! : 

Call to fact(4) 

4*fact(3) = ? 

 Call to fact(3) 

3*fact(2) = ? 

Call to fact(2) 

2*fact(1) = ? 

Call to fact(1) 

1*fact(0) = ? 

Call to fact(0)  

Back of there value 1 

1*1 

Return of value 1 

2*1 

Return of value 2 

3*2 

Back of there value 6 

     = N*(N-1)*(N-2)! 
 

   =N*(N-1)*(N-2)*  ........... * 0! 

4*6 

Back of there value 24 

Recursion call 
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2. Types of recursion: 

 We distinguished usually two types of recursion :

 simple recursion 

 crossed recursion 
 

 The simple recursion: 

 This is when a subroutine (function or procedure) calls itself. This is 

indeed the general case of recursion, as we have already seen in the 

previous example with the function fact.

Syntax : 

Procedure P 

 Begin 

… 

Call to P; 

… 

END ; 

Example : calculation of the sum of the first n positive integers.  

Sum (n) = 1 + 2 + 3 + … + (n-1) + N 

Function Sum (N : integer) : integer; 

 S: integer; 

Begin 

If ( n = 1) then 

S←1 ; 

Else  

S ← Sum (n-1) + n ; 

 The cross recursion: 

 We call cross recursion the do that two procedures P1 And P2 call each 

other, i.e. when P1 executes, it calls P2 , and when P2 executes, it calls 

to P1 .

Syntax: 

Procedure P1 

Begin 

… 

Call to  P2 ; 

… 

END ; 

Procedure P2 

Begin 

… 

Call to P1 ; 

… 

END ; 

Example : 

 A positive integer n can be either :

Even → n = 2*k  

Odd  → n = 2*k+1 

 If we considered two functions Even (n) And Odd (n) has logical  values 

( boolean ) then we will have :

If Even (n) = true  then Odd (n) = false  

If Odd (n) = true   then Even (n) = false 

End if 

Return (S) ; 

END; 
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call even (4) 

True call odd (3) 

True 
 

call even (2) 

True 
 

call odd (1) 

True 
 

call even (0) 

 

 

 
 

 

Application: we want to check even (4):  

True 

3. Rules of design : 

a) First rule : 

 Seek to break down the problem into several below problems of  the 

same kind but lower size.

b) Second rule : 

 Any recursive algorithm must distinguish several cases, at least one of 

which born must not include recursive call (stop Condition Or ending ) . 

It is the trivial case, otherwise risk of loop infinitely.

Condition of termination: 

 Non-recursive cases of a recursive algorithm are called base cases.

 The conditions that the data must satisfy in these base cases  are 

called conditions of ending.

Example : 
 

Function fact (N : integer):integer ;  

R: integer ; 

Begin 

Return (N * fact (N - 1)) ; 

END; 
 

Call to fact(4) 

4*fact(3) = ? 

Apple at fact(3) 

3*fact(2) = ? 

Call to fact(2) 

2*fact(1) = ? 

Call has fact(1) 

1*fact(0) = ? 

Call to fact(0) 

0*fact(- 1) = ? 

… 

Without conditions 

of ending?! 

Function even (n : integer): boolean ;     

R: boolean; 

Begin 

if (n = 0)  then 

R ← true ; 

else 

R ← odd (n-1) ; 

End if 

return (R) ; 

End ; 

Function odd (n : integer): boolean;  

  R: boolean; 

Begin 

if (n = 0)  then 

R ← false ; 

else 

R ← even (n-1) ; 

End if 

return (R) ; 

End ; 
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Solution : 

Function fact (N: integer): Integer; 

R : integer; 

Begin 

If ( N = 0 ) then  

R ← 1; 

Else  

R ← N * fact (N - 1); 

End if 

Return (R) ; 

END; 

Noticed : 

 Since a recursive function calls itself, it is imperative that we provide for 

a condition stop to the recursion, otherwise the program does never stop.

 We must always test the stopping condition first, and then, if the 

condition is not verified, we start a recursive call.

 
c) Third rule : 

 All call recursive must to do with data closer to the data that satisfying 

the termination condition.

Benefits of the recursion: 
 

 Simplify the writing of programs, because the calculations to be 

performed are not explicitly defined.

 Facilitate the task of the programmer who will no longer have to specify 

the number of iterations of the same action, neither have to manage the 

values of the different variables used.

 Base case 


