
1

Chapter 1(part 2): Recursion

1. Notion of the recursion:

 In programming, recursion is a method that allows a sub- program

(procedure or function) of calls herself.

 It is in their part body (instructions) we find a call to the procedure (or

function) itself.

Example: write an algorithm (function) to calculate the factorial of a given

integer N?

a) Solution iterative (classic) :

N !=1*2* 3*4*5*… *(N-1)*N.

Function fact (N: integer): integer;

 R, i: integer;

Begin

R ← 1;

For i = 1 to N do

R ← R* i ;

End For

Return (R) ;

END ;

b) Solution recursive:

N !=N*(N-1) !

 the function factorial “ fact ” is defined as follows :

 If N = 0 : fact (0) = 1.

 If N < > 0: fact (N)=N*fact(N-1).

 In algorithmic, the function fact is defined as follow :

Function fact (N: integer): integer;

 R: integer ;

Begin

If (N = 0) then

R ← 1;

Else

R ← N * fact (N - 1);

End if

Return (R) ;

END;
Application for 4! :

Call to fact(4)

4*fact(3) = ?

 Call to fact(3)

3*fact(2) = ?

Call to fact(2)

2*fact(1) = ?

Call to fact(1)

1*fact(0) = ?

Call to fact(0)

Back of there value 1

1*1

Return of value 1

2*1

Return of value 2

3*2

Back of there value 6

 = N*(N-1)*(N-2)!

 =N*(N-1)*(N-2)* * 0!

4*6

Back of there value 24

Recursion call

2

2. Types of recursion:

 We distinguished usually two types of recursion :

 simple recursion

 crossed recursion

 The simple recursion:

 This is when a subroutine (function or procedure) calls itself. This is

indeed the general case of recursion, as we have already seen in the

previous example with the function fact.

Syntax :

Procedure P

 Begin

…

Call to P;

…

END ;

Example : calculation of the sum of the first n positive integers.

Sum (n) = 1 + 2 + 3 + … + (n-1) + N

Function Sum (N : integer) : integer;

 S: integer;

Begin

If (n = 1) then

S←1 ;

Else

S ← Sum (n-1) + n ;

 The cross recursion:

 We call cross recursion the do that two procedures P1 And P2 call each

other, i.e. when P1 executes, it calls P2 , and when P2 executes, it calls

to P1 .

Syntax:

Procedure P1

Begin

…

Call to P2 ;

…

END ;

Procedure P2

Begin

…

Call to P1 ;

…

END ;

Example :

 A positive integer n can be either :

Even → n = 2*k

Odd → n = 2*k+1

 If we considered two functions Even (n) And Odd (n) has logical values

(boolean) then we will have :

If Even (n) = true then Odd (n) = false

If Odd (n) = true then Even (n) = false

End if

Return (S) ;

END;

3

call even (4)

True call odd (3)

True

call even (2)

True

call odd (1)

True

call even (0)

Application: we want to check even (4):

True

3. Rules of design :

a) First rule :

 Seek to break down the problem into several below problems of the

same kind but lower size.

b) Second rule :

 Any recursive algorithm must distinguish several cases, at least one of

which born must not include recursive call (stop Condition Or ending) .

It is the trivial case, otherwise risk of loop infinitely.

Condition of termination:

 Non-recursive cases of a recursive algorithm are called base cases.

 The conditions that the data must satisfy in these base cases are

called conditions of ending.

Example :

Function fact (N : integer):integer ;

R: integer ;

Begin

Return (N * fact (N - 1)) ;

END;

Call to fact(4)

4*fact(3) = ?

Apple at fact(3)

3*fact(2) = ?

Call to fact(2)

2*fact(1) = ?

Call has fact(1)

1*fact(0) = ?

Call to fact(0)

0*fact(- 1) = ?

…

Without conditions

of ending?!

Function even (n : integer): boolean ;

R: boolean;

Begin

if (n = 0) then

R ← true ;

else

R ← odd (n-1) ;

End if

return (R) ;

End ;

Function odd (n : integer): boolean;

 R: boolean;

Begin

if (n = 0) then

R ← false ;

else

R ← even (n-1) ;

End if

return (R) ;

End ;

4

Solution :

Function fact (N: integer): Integer;

R : integer;

Begin

If (N = 0) then

R ← 1;

Else

R ← N * fact (N - 1);

End if

Return (R) ;

END;

Noticed :

 Since a recursive function calls itself, it is imperative that we provide for

a condition stop to the recursion, otherwise the program does never stop.

 We must always test the stopping condition first, and then, if the

condition is not verified, we start a recursive call.

c) Third rule :

 All call recursive must to do with data closer to the data that satisfying

the termination condition.

Benefits of the recursion:

 Simplify the writing of programs, because the calculations to be

performed are not explicitly defined.

 Facilitate the task of the programmer who will no longer have to specify

the number of iterations of the same action, neither have to manage the

values of the different variables used.

 Base case

