Mathematics 2

Work Sheet 02

Exercise 1. Which of the following equations are linear?
(1) $2 x-3 y+4 z=10$.
(2) $\frac{1}{\sqrt{2}} x+4^{3} y=\sin \left(\frac{\pi}{3}\right)$.
(3) $x^{2}+y^{2}+z^{2}=1$.
(4) $2.123 x_{1}+5.541 x_{2}-9.101 x_{3}=11.012$.
(5) $x+y z=3$.

Exercise 2.

$$
\begin{array}{r}
x+2 y+3 z+4 w=4 \\
x+y+z+w=2 \\
x+2 y-+2 z+w=2
\end{array}
$$

For each of the following tuples (x, y, z, w) of real numbers, determine whether it is a solution of the first equation, second equation, and/or third equation. Which ones are solutions to the system of equations?
(a) $(2,0,-2,2)$
(C) $(1,1,-1,1)$
(e) $(2,-2,2,0)$
(b) $(2,2,-2,0)$
(d) $(3,0,-1,1)$

Exercise 3. Using Cramer's rule, find the solutions of the next system

$$
\begin{aligned}
x+y-z & =6 \\
3 x-2 y+z & =-5 . \\
x+3 y-2 z & =14
\end{aligned}
$$

Exercise 4. Using Gaussian elimination, find the solutions of the next systems, then calculate the determinant of each coefficient matrix.
(1)
(2)

$$
S^{\prime}:\left\{\begin{array}{rl}
2 x_{1}+4 x_{2}-x_{3}+5 x_{4} & =-10 \\
x_{1}+2 x_{2} & +7 x_{4}
\end{array}=-130 子 \begin{array}{rl}
& =-5
\end{array}\right.
$$

Exercise 5. Solve the next system, where x, y and z are positive real numbers.

$$
\left\{\begin{aligned}
x^{3} y^{2} z^{6} & =1 \\
x^{4} y^{5} z^{12} & =2 \\
x^{2} y^{2} z^{5} & =3
\end{aligned}\right.
$$

Exercise 6. Find the real numbers α, β, γ such that for every polynomial P of degree $\leqslant 3$ we have

$$
\int_{2}^{4} P(x) d x=\alpha P(2)+\beta P(3)+\gamma P(4) .
$$

Exercise 7. Find the characteristic polynomial, eigenvalues, and basic eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
0 & 3 & -1 \\
-2 & 4 & -2 \\
2 & -3 & 3
\end{array}\right]
$$

Exercise 8. Let

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]
$$

Find A^{50}.

