
Machine Structure 02

Chapiter 01

Combinatorial Circuits

2

Introduction and Recap

• To understand the operation of the main elements of a
computer, such as the Arithmetic and Logic Unit
(ALU).

You should have achieved the following objectives:

1. Describe the operation and properties of logic gates,
simple combinational circuits such as adders,
decoders, multiplexers, and demultiplexers...;

2. Use the theorems and identities of Boolean algebra to
synthesize a circuit from its truth table and simplify
the obtained result.

3

Objectives

• Learn the structure of some commonly used
combinational circuits (half adder, full adder,
...).

• Learn how to use combinational circuits to
design other more complex circuits.

4

1. Combinatorial Circuits

• A combinatorial circuit is a digital circuit whose
outputs depend only on the inputs.

• Si = F(Ei)
• Si = F(E1, E2, ..., En)

Combinatorial
Circuit

E1

E2

..

En

S1

S2

..

Sm

• It is possible to use combinational circuits to
implement other more complex circuits.

Block Diagram

5

Examples of Combinational Circuits

1. Half Adder

2. Full Adder

3. Comparator

4. Multiplexer

5. Demultiplexer

6. Encoder

7. Decoder

8. Transcoder,,,,,

6

• In a computer, we can distinguish three different classes
of combinational logic circuits.

1. Combinational circuits for arithmetic and logic
operations, such as adders, subtractors, comparators, etc.

2. Combinational circuits for data routing and transmission,
such as encoders, decoders, multiplexers, demultiplexers,
etc.

3. Combinational circuits for coding and code conversion,
such as transcoders, 7-segment displays, etc.

Examples of Combinational Circuits

7

Half Adder

• The half adder is a combinational circuit that allows
for the arithmetic sum of two numbers A and B, each
on one bit. At the output, we will have the Sum S and
the Carry R

AD
A

B

S

R

To find the structure (the diagram) of this
circuit, we first need to create its truth table.

8

• En binaire l’addition sur un
seul bit se fait de la
manière suivante:

• dresser sa table de vérité :

AD
A

B

S

R

9

• In binary, addition on a
single bit is done as
follows:

A B R S

0 0

0 1

1 0

1 1 BABABAS

BAR

..

.

•The associated truth table:

From the truth table, we can find...

10

A B R S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0 BABABAS

BAR

..

.

• In binary, addition on a
single bit is done as
follows:

•The associated truth table:

From the truth table, we can find...

11

A B R S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0 BABABAS

BAR

..

.

• In binary, addition on a
single bit is done as
follows:

•The associated truth table:

From the truth table, we can find...

12

BAS

BAR

 .

13

• In binary, when performing addition, the incoming
carry must be taken into account.

r4 r3 r2 r1 r0= 0

+
a4 a3 a2 a1

b4 b3 b2 b1

r4 s4 s3 s2 s1

ri-1

ai

+ bi

ri si

Full Adder

14

• The full adder for one bit has 3 inputs:

 ai : the first number on one bit.

 bi : the second number on one bit.

 ri-1 : the incoming carry on one bit.

• It has two outputs:

• Si: the sum

• Ri: the outgoing carry

Full Adder

ai

bi

ri-1

Si

Ri

Full Adder : 1-Bit

15

Truth table of a full
adder for 1 bit

Full Adder

ai

bi

ri-1

Si

Ri

Create its truth table?

16

ai bi ri-1 ri si

• It has 3 inputs:

1. ai: the first number.

2. bi: the second number.

3. ri-1: the incoming carry.

• It has 2 outputs:

1. Si: the sum

2. Ri: the outgoing carry

Truth table of a full
adder for 1 bit

17

ai bi ri-1 ri si

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1111

1111

iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit

18

ai bi ri-1 ri si

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1111

1111

iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit

19

ai bi ri-1 ri si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1111

1111

iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit

20

ai bi ri-1 ri si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1111

1111

iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit

21

iiiiii

iiiiiiiiiii

iiiiiiiiiiiii

BABARR

RRBABABARR

RBARBARBARBAR

).(

)()...(

1

111

1111

1

11

1111

1111

).()(

)...()...(

........

iiii

iiiiiii

iiiiiiiiiii

iiiiiiiiiiiii

RBAS

RBARBAS

RBRBARBRBAS

RBARBARBARBAS

If we want to simplify the equations, we obtain:

22

iiiiii

iiiiiiiiiii

iiiiiiiiiiiii

BABARR

RRBABABARR

RBARBARBARBAR

).(

)()...(

1

111

1111

1

11

1111

1111

).()(

)...()...(

........

iiii

iiiiiii

iiiiiiiiiii

iiiiiiiiiiiii

RBAS

RBARBAS

RBRBARBRBAS

RBARBARBARBAS

X=BiRi-1

=AiX

X=BiRi-1

If we want to simplify the equations, we obtain:

23

3.2 Diagram of a full adder

24

Using Half Adders

Z

T

i

i

1i1i

1ii

1ii

iiii

1iiii

ii1iiii

S

YR

 :obtient On

 .XRTet RX Zposeon siet

RXS

.XRYR

:obtient On

BAYet BAX poseon Si

RBAS

)A.(BR.BAR

• We note that X and Y are the outputs of a half adder with inputs
A and B. We observe that Z and T are the outputs of a half adder
with inputs X and Ri-1.

BAS

BAR

 .

Half-Adder

25

Comparison of a Half Adder with a
Full Adder

Full Adder

Half Adder

26

3.2 Comparaison d’un demi additionneur
avec additionneur complet

Full Adder

Half Adder

Half Adder

Half Adder

27

Z

T

i

i

1i

1i

ii

ii

S

YR

 .XRT

 RX Z

BAY

 BAX

28

(Four) 4-Bits Adder

• A 4-bit adder is a circuit that performs the addition of two
4-bit numbers, A and B, where:

 A(a3 a2 a1 a0)

 B(b3 b2 b1 b0)

• Additionally, it takes into account the incoming carry. The
output consists of the 4-bit result and the carry (5 bits in
total). Therefore, the circuit has 9 inputs and 5 outputs.

• With 9 inputs, we have a total of 29 = 512 combinations!!!
How can we represent the truth table?

• We need to find a simpler and more efficient solution to
design this circuit.

29

•When performing binary addition, we add bit by bit starting
from the least significant bit, and each time we propagate the
outgoing carry to the higher-order bit. Addition on a single
bit can be accomplished using a full adder for 1 bit.

r3 r2 r1 r0= 0

+
a4 a3 a2 a1

b4 b3 b2 b1

r4 s4 r3 s3 r2 s2 r1 s1

r4 s4 s3 s2 s1

Final Result

30

(Four) 4-Bit Adder (Diagram)

31

Exercice 1

• An odd (number not divided by two) parity
generator is a function that returns 1 if the
number of set bits is uncommon, and 0
otherwise.

• Define this function for a 4-bit word. Provide a
logical circuit implementing this function.

32

• What is the parity bit?

• Definition: The parity bit, or check bit, is a bit
added to a binary code to check whether the code
has an even or odd number of 1s. In odd parity,
the code must have an odd number of 1s.

• For example, the code 10011 has odd parity
because there are three 1s.

• On the other hand, the code 101101 is said to
have even parity because there are four 1s.

Exercice 1

33

• Qu'est-ce que le bit de parité?

• Définition: Le bit de parité ou le bit de contrôle
sont les bits ajoutés au code binaire pour vérifier
si le code est en parité ou non, Dans le bit de
parité impair, le code doit être dans un nombre
impair de 1 . Exemple, Le code: 10011, à une
parité impaire car il y a trois nombres de 1.
Le code : 101101, est dit à parité paire car il y a
quatre nombres de 1 .

Exercice 1

34

Exercice 1

• Correction: The formula for the 4-bit odd
parity generator (P) obtained directly from the
truth table is:

• which would result in a much too

complicated circuit! We notice that

for two bits, P = A B:

35

Exercice 1

• The following circuits are deduced:

36

Exercice 2

• Recall the principles of a half-adder and then a
full-adder. Deduce from these principles a logical
circuit that implements the two's complement on

n bits.

• Correction: The half-adder has two inputs
(x and y) and two outputs (R and S). S
corresponds to the zeroth bit of the result of the
binary addition of x and y, and R to the first bit
(carry).

37

Exercice

• Un additionneur complet s’obtient en enchaînant des
demi-additionneurs de manière à propager correctement la
retenue. On obtient selon le même principe le circuit
effectuant un complément à deux :

38

Exercice

• A full adder is obtained by chaining half adders together in
such a way as to correctly propagate the carry. We obtain
according to the same principle the circuit carrying out a
two's complement:

39

Comparator

• A comparator is an arithmetic circuit used to compare two
binary numbers, A and B.

• The numbers A and B must have the same length (number
of bits).

• We want to determine if A > B, A < B, or A = B.
Therefore, the circuit provides a three-way answer.

• Our final circuit should produce three signals

• fs (active if A > B),

• fi (active if A < B), and

• fe (active if A = B)

• by taking signals A and B as inputs.

40

• It is a combinational circuit that
allows comparison between two
binary numbers, A and B.

• It has 2 inputs:

• A: one bit

• B: one bit

• It has 3 outputs:

• fe: equality (A=B)

• fi: less than (A < B)

• fs: greater than (A > B)

fi

fe

fs

Comparator
1 bit

A

B

Comparator

41

Truth table of a 1-bit
comparator

Compile its truth table:

Comparator

42

Implementation of a 1-Bit Comparator

A B fs fe fi

0 0

0 1

1 0

1 1

fe

fi

fs

43

A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fe

fi

fs

Implementation of a 1-Bit Comparator

44

A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs

 .

Implementation of a 1-Bit Comparator

45

A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs

 .

Implementation of a 1-Bit Comparator

46

A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs

 .

Implementation of a 1-Bit Comparator

47

A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs

 .

Implementation of a 1-Bit Comparator

48

fifsfe

BAfi

BAfs

 .

Implementation of a 1-Bit Comparator

49

• It allows the comparison between two numbers A
(a2a1) and B (b2b1), each with two bits.

Comparator
2 bits

A1

A2

B1

B2

fi

fe

fs

Implementation of a 2-Bit Comparator

50

A2 A1 B2 B1 fs fe fi

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

51

)11).(22(BABAfe

)1.1).(22(2.2 BABABAfs

)1.1).(22(2.2 BABABAfi

A2 A1 B2 B1 fs fe fi

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1. A=B si

A2=B2 et A1=B1

2. A>B si

A2 > B2 ou (A2=B2 et A1>B1)

3. A<B si

A2 < B2 ou (A2=B2 et A1<B1)

Comparator one bit

52

)11).(22(BABAfe

)1.1).(22(2.2 BABABAfs

)1.1).(22(2.2 BABABAfi

A2 A1 B2 B1 fs fe fi

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1. A=B si

A2=B2 et A1=B1

2. A>B si

A2 > B2 ou (A2=B2 et A1>B1)

3. A<B si

A2 < B2 ou (A2=B2 et A1<B1)

53

• It is possible to implement a 2-bit comparator using 1-bit
comparators and logical gates. One comparator is used to
compare the least significant bits, and another is used to
compare the most significant bits. The outputs of these
two comparators are combined to generate the final
outputs of the overall comparator.

Comparator 1 bit

fs1 fe1 fi1

a1 b1

Comparator 1 bit

fs2 fe2 fi2

a2 b2

Implementation of a 2-Bit Comparator
using 1-bit Comparator

54

1. A=B si

A2=B2 et A1=B1

2. A>B si

A2 > B2 ou (A2=B2 and A1>B1)

3. A<B si

A2 < B2 ou (A2=B2 and A1<B1)

55

56

Comparator with cascading inputs

• We notice that:

• If A2 > B2 then A > B

• If A2 < B2 then A < B

• However, if A2 = B2, then we need to consider the
comparison result of the least significant bits.

• To do this, we add to the comparator inputs that
indicate the result of the previous comparison.

• These inputs are called cascading inputs.

57

Comp

fs fe fi

A2 B2

Es (>)
Eg (=)
Ei (<)

A2 B2 Es Eg Ei fs fe fs

A2>B2 X X X 1 0 0

A2<B2 X X X 0 0 1

A2=B1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

fs= (A2>B2) ou (A2=B2).Es
fi= (A2<B2) ou (A2=B2).Ei
fe= (A2=B2).Eg

58

59

Exercice

• Implement a 4-bit comparator

using cascaded 2-bit comparators?

60

Multiplexer

• Definition: A multiplexer is a combinational logic
circuit that has 2n inputs, n control inputs, and a single
output. It allows routing the value of the input line
specified by its control inputs to the output line.

61

• Synthesis of the circuit (8x1 multiplexer) example:

0 0 0

E0

Multiplexer

62

0 0 1

E1

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

63

0 1 0

E2

Multiplexer

• Synthesis of the circuit (8x1 multiplexer) example:

64

0 1 1

E3

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

65

0 1 1

E3

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

66

1 0 0

E4

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

67

1 0 1

E5

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

68

1 1 0

E6

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

69

1 1 1

E7

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

70

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

71

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

72

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer

73

• The multiplexer is a combinational selector circuit
that has 2n data inputs, n control inputs, and a single
output. Its role is to select, using control signals, one
of the inputs and connect it to the output.

Multiplexer

74

Multiplexer
• The multiplexer is a combinational selector circuit

that has 2n data inputs, n control inputs, and a single
output. Its role is to select, using control signals, one
of the inputs and connect it to the output.

75

Multiplexer 2 1
• The multiplexer is a combinational selector circuit

that has 2n data inputs, n control inputs, and a single
output. Its role is to select, using control signals, one
of the inputs and connect it to the output.

=S

76

Description of the behavior of the 2-to-1 multiplexer:

The output S takes on the value of the data input:

• En1 when the selection input Com is active (logic level 1).

• En2 when the selection input Com is inactive (logic level 0).
The input Com thus directs either the information arriving
from input En1 or that arriving from input En2

to the output S.

Multiplexer

=S

77

Description of the behavior of the 2-to-1 multiplexer:

The output S takes on the value of the data input:

• En1 when the selection input Com is active (logic level 1).

• En2 when the selection input Com is inactive (logic level 0).
The input Com thus directs either the information arriving
from input En1 or that arriving from input En2

to the output S.

Multiplexer

78

C1 C0 S

0 0 E0

0 1 E1

1 0 E2

1 1 E3

E3 E2 E1 E0
C0
C1 Mux 4 1

S

)3.(0.1)2.(0.1)1.(0.1)0.(0.1 ECCECCECCECCS

Multiplexer 4 1

79

C2 C1 C0 S

0 0 0 E0

0 0 1 E1

0 1 0 E2

0 1 1 E3

1 0 0 E4

1 0 1 E5

1 1 0 E6

1 1 1 E7

E7 E6 E5 E4 E3 E2 E1 E0
C0
C1 Mux 8 1

C2

)7(0.1.2)6(0.1.2)5(0.1.2)4(0.1.2

)3(0.1.2)2(0.1.2)1(0.1.2)0.(0.1.2

ECCCECCCECCCECCC

ECCCECCCECCCECCCS

Multiplexer 8 1

80

One can always generate any logical functions using
multiplexers and basic logic gates. It is sufficient to connect
the variables of the function to be generated to the various
inputs of the multiplexer (standard inputs and control inputs).
Example 1: Implement the following function

using an 8x1 multiplexer.

Logical functions using multiplexers:

81

Logical functions using multiplexers:

82

Logical functions using multiplexers:

83

0 0 0

If A=0 , B=0 and C=0 Then F=0

0
F=0

0

0 0 0

Logical functions using multiplexers:

84

0 0 1

If A=0 , B=0 and C=0 Then F=0

1
F=1

1

0 0 1

Logical functions using multiplexers:

85

0 1 0

If A=0 , B=0 and C=0 Then F=0

1
F=1

1

0 1 0

Logical functions using multiplexers:

86

0 1 1

If A=0 , B=0 and C=0 Then F=0

1
F=1

1

0 1 1

Logical functions using multiplexers:

87

1 0 0

If A=0 , B=0 and C=0 Then F=0

0
F=0

0

0 0 0

Logical functions using multiplexers:

88

Example 1: Implement
The function using a 4x1 multiplexer.

Logical functions using multiplexers:

89

Example 1: Implement the
Function using a 4x1
multiplexer.

Logical functions using multiplexers:

90

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

91

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

92

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

93

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

94

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

95

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

96

F=C

If A=0 and B=0 Then F=C

The 4x1 Mux
allows Routing
the value of C to
the output F.

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

97

F=1

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

If A=0 and B=1 Then F=1

The 4x1 Mux
allows Routing
the value 1 to
the output F.

98

F=C

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

If A=1 and B=0 then F=C

The 4x1 Mux
allows Routing
the value of C to
the output F.

99

F=0

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1
multiplexer.

If A=1 and B=1 then F=0

The 4x1 Mux
allows Routing
the value 0 to
the output F.

100

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.

101

ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.

102

ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.

103

ai bi ri-1 ri

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.

104

ai bi ri-1 ri

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.

105

Implementation of the function for: the sum

)7(0.1.2)6(0.1.2)5(0.1.2)4(0.1.2

)3(0.1.2)2(0.1.2)1(0.1.2)0.(0.1.2

ECCCECCCECCCECCC

ECCCECCCECCCECCCS

106

)7(0.1.2)6(0.1.2)5(0.1.2)4(0.1.2

)3(0.1.2)2(0.1.2)1(0.1.2)0.(0.1.2

ECCCECCCECCCECCC

ECCCECCCECCCECCCS

Implementation of the function for: the carry

107

‘1’

‘0’

E7 E6 E5 E4 E3 E2 E1 E0
C0
C1 Mux 8 1

C2

ri-1

bi

ai

Ri

‘1’

‘0’

E7 E6 E5 E4 E3 E2 E1 E0
C0
C1 Mux 8 1

C2

Si

ri-1

bi

ai

Implementation of a full adder using 8x1
multiplexers

108

Exercice

• Design the circuit that allows finding the
maximum between two numbers A and B on one
bit using the minimum number of logic gates and
combinational circuits?

