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Introduction and Recap

• To understand the operation of the main elements of a
computer, such as the Arithmetic and Logic Unit
(ALU).

You should have achieved the following objectives:

1. Describe the operation and properties of logic gates,
simple combinational circuits such as adders,
decoders, multiplexers, and demultiplexers...;

2. Use the theorems and identities of Boolean algebra to
synthesize a circuit from its truth table and simplify
the obtained result.
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Objectives

• Learn the structure of some commonly used 
combinational circuits (half adder, full adder, 
...).

• Learn how to use combinational circuits to 
design other more complex circuits.
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1. Combinatorial Circuits

• A combinatorial circuit is a digital circuit whose
outputs depend only on the inputs.

• Si = F(Ei)
• Si = F(E1, E2, ..., En)

Combinatorial
Circuit

E1

E2

..

En

S1

S2

..

Sm

• It is possible to use combinational circuits to
implement other more complex circuits.

Block Diagram
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Examples of Combinational Circuits

1. Half Adder 

2. Full Adder 

3. Comparator 

4. Multiplexer 

5. Demultiplexer 

6. Encoder 

7. Decoder

8. Transcoder,,,,,
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• In a computer, we can distinguish three different classes 
of combinational logic circuits. 

1. Combinational circuits for arithmetic and logic 
operations, such as adders, subtractors, comparators, etc.

2. Combinational circuits for data routing and transmission, 
such as encoders, decoders, multiplexers, demultiplexers, 
etc. 

3. Combinational circuits for coding and code conversion, 
such as transcoders, 7-segment displays, etc.

Examples of Combinational Circuits
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Half Adder

• The half adder is a combinational circuit that allows
for the arithmetic sum of two numbers A and B, each
on one bit. At the output, we will have the Sum S and
the Carry R

AD
A

B

S

R 

To find the structure (the diagram) of this
circuit, we first need to create its truth table.
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• En binaire l’addition sur un
seul bit se fait de la
manière suivante:

• dresser sa table de vérité :

AD
A

B

S

R 
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• In binary, addition on a
single bit is done as
follows:

A B R S

0 0

0 1

1 0

1 1 BABABAS

BAR





..

.

•The associated truth table:

From the truth table, we can find...
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A B R S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0 BABABAS

BAR





..

.

• In binary, addition on a
single bit is done as
follows:

•The associated truth table:

From the truth table, we can find...
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A B R S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0 BABABAS

BAR





..

.

• In binary, addition on a
single bit is done as
follows:

•The associated truth table:

From the truth table, we can find...
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BAS

BAR


 .
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• In binary, when performing addition, the incoming
carry must be taken into account.

r4 r3 r2 r1 r0= 0

+
a4 a3 a2 a1

b4 b3 b2 b1

r4 s4 s3 s2 s1

ri-1

ai

+ bi

ri si

Full Adder
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• The full adder for one bit has 3 inputs:

 ai : the first number on one bit.

 bi : the second number on one bit.

 ri-1 : the incoming carry on one bit.

• It has two outputs:

• Si: the sum

• Ri: the outgoing carry

Full Adder 

ai

bi

ri-1

Si

Ri

Full Adder : 1-Bit
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Truth table of a full
adder for 1 bit

Full Adder

ai

bi

ri-1

Si

Ri

Create its truth table?
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ai bi ri-1 ri si

• It has 3 inputs:

1. ai: the first number.

2. bi: the second number.

3. ri-1: the incoming carry.

• It has 2 outputs:

1. Si: the sum

2. Ri: the outgoing carry

Truth table of a full
adder for 1 bit
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ai bi ri-1 ri si

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1111

1111 ........









iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit
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ai bi ri-1 ri si

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1111

1111 ........









iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit
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ai bi ri-1 ri si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1111

1111 ........









iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit
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ai bi ri-1 ri si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

1111

1111 ........









iiiiiiiiiiiii

iiiiiiiiiiiii

RBARBARBARBAR

RBARBARBARBAS

Truth table of a full
adder for 1 bit
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iiiiii

iiiiiiiiiii

iiiiiiiiiiiii

BABARR

RRBABABARR

RBARBARBARBAR












).(
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1

111

1111

1

11

1111

1111

).()(

)...()...(

........
















iiii

iiiiiii

iiiiiiiiiii

iiiiiiiiiiiii

RBAS

RBARBAS

RBRBARBRBAS

RBARBARBARBAS

If we want to simplify the equations, we obtain:
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iiiiii

iiiiiiiiiii

iiiiiiiiiiiii

BABARR

RRBABABARR

RBARBARBARBAR
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1111

1111

).()(

)...()...(

........
















iiii

iiiiiii

iiiiiiiiiii

iiiiiiiiiiiii

RBAS

RBARBAS

RBRBARBRBAS

RBARBARBARBAS

X=BiRi-1

=AiX

X=BiRi-1

If we want to simplify the equations, we obtain:
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3.2 Diagram of a full adder
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Using Half Adders

Z

T























i

i

1i1i

1ii

1ii

iiii

1iiii

ii1iiii

S

YR

 :obtient On 

 .XRTet  RX  Zposeon  siet 

RXS

.XRYR

:obtient  On 

BAYet    BAX   poseon  Si

RBAS

)A.(BR.BAR

• We note that X and Y are the outputs of a half adder with inputs 
A and B. We observe that Z and T are the outputs of a half adder 
with inputs X and Ri-1.

BAS

BAR


 .

Half-Adder
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Comparison of a Half Adder with a 
Full Adder

Full Adder

Half Adder
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3.2 Comparaison d’un demi additionneur 
avec additionneur complet

Full Adder

Half Adder

Half Adder

Half Adder
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Z
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(Four) 4-Bits Adder

• A 4-bit adder is a circuit that performs the addition of two 
4-bit numbers, A and B, where:

 A(a3  a2  a1  a0) 

 B(b3  b2  b1  b0)

• Additionally, it takes into account the incoming carry. The 
output consists of the 4-bit result and the carry (5 bits in 
total). Therefore, the circuit has 9 inputs and 5 outputs.

• With 9 inputs, we have a total of 29 = 512 combinations!!! 
How can we represent the truth table?

• We need to find a simpler and more efficient solution to 
design this circuit.
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•When performing binary addition, we add bit by bit starting
from the least significant bit, and each time we propagate the
outgoing carry to the higher-order bit. Addition on a single
bit can be accomplished using a full adder for 1 bit.

r3 r2 r1 r0= 0

+
a4 a3 a2 a1

b4 b3 b2 b1

r4 s4 r3 s3 r2 s2 r1 s1

r4     s4 s3         s2 s1

Final Result
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(Four) 4-Bit Adder (Diagram)
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Exercice 1

• An odd (number not divided by two) parity 
generator is a function that returns 1 if the 
number of set bits is uncommon, and 0 
otherwise.

• Define this function for a 4-bit word. Provide a 
logical circuit implementing this function.
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• What is the parity bit?

• Definition: The parity bit, or check bit, is a bit
added to a binary code to check whether the code
has an even or odd number of 1s. In odd parity,
the code must have an odd number of 1s.

• For example, the code 10011 has odd parity
because there are three 1s.

• On the other hand, the code 101101 is said to
have even parity because there are four 1s.

Exercice 1
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• Qu'est-ce que le bit de parité?

• Définition: Le bit de parité ou le bit de contrôle
sont les bits ajoutés au code binaire pour vérifier
si le code est en parité ou non, Dans le bit de
parité impair, le code doit être dans un nombre
impair de 1 . Exemple, Le code: 10011, à une
parité impaire car il y a trois nombres de 1.
Le code : 101101, est dit à parité paire car il y a
quatre nombres de 1 .

Exercice 1
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Exercice 1

• Correction: The formula for the 4-bit odd 
parity generator (P) obtained directly from the 
truth table is:

• which would result in a much too 

complicated circuit! We notice that 

for two bits, P = A B:
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Exercice 1

• The following circuits are deduced:
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Exercice 2

• Recall the principles of a half-adder and then a 
full-adder. Deduce from these principles a logical 
circuit that implements the two's complement on 

n bits.

• Correction: The half-adder has two inputs                
(x and y) and two outputs (R and S). S 
corresponds to the zeroth bit of the result of the 
binary addition of x and y, and R to the first bit 
(carry).
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Exercice

• Un additionneur complet s’obtient en enchaînant des 
demi-additionneurs de manière à propager correctement la 
retenue. On obtient selon le même principe le circuit 
effectuant un complément à deux :
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Exercice

• A full adder is obtained by chaining half adders together in 
such a way as to correctly propagate the carry. We obtain 
according to the same principle the circuit carrying out a 
two's complement:
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Comparator 

• A comparator is an arithmetic circuit used to compare two 
binary numbers, A and B. 

• The numbers A and B must have the same length (number 
of bits). 

• We want to determine if A > B, A < B, or A = B. 
Therefore, the circuit provides a three-way answer. 

• Our final circuit should produce three signals 

• fs (active if A > B),

• fi (active if A < B), and 

• fe (active if A = B) 

• by taking signals A and B as inputs.
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• It is a combinational circuit that 
allows comparison between two 
binary numbers, A and B. 

• It has 2 inputs:

• A: one bit 

• B: one bit

• It has 3 outputs: 

• fe: equality (A=B) 

• fi: less than (A < B) 

• fs: greater than (A > B)

fi

fe

fs

Comparator
1 bit

A

B

Comparator 
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Truth table of a 1-bit 
comparator

Compile its truth table:

Comparator 
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Implementation of a 1-Bit Comparator

A B fs fe fi

0 0

0 1

1 0

1 1





fe

fi

fs
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A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0





fe

fi

fs

Implementation of a 1-Bit Comparator
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A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs





 .

Implementation of a 1-Bit Comparator
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A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs





 .

Implementation of a 1-Bit Comparator
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A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs





 .

Implementation of a 1-Bit Comparator
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A B fs fe fi

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

fifsBAABBAfe

BAfi

BAfs





 .

Implementation of a 1-Bit Comparator
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fifsfe

BAfi

BAfs





 .

Implementation of a 1-Bit Comparator
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• It allows the comparison between two numbers A
(a2a1) and B (b2b1), each with two bits.

Comparator
2 bits

A1

A2

B1

B2

fi

fe

fs

Implementation of a 2-Bit Comparator
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A2 A1 B2 B1 fs fe fi

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
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)11).(22( BABAfe 

)1.1).(22(2.2 BABABAfs 

)1.1).(22(2.2 BABABAfi 

A2 A1 B2 B1 fs fe fi

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1. A=B si 

A2=B2 et A1=B1

2. A>B si 

A2 > B2 ou (A2=B2 et A1>B1)

3. A<B si 

A2 < B2 ou (A2=B2 et A1<B1)

Comparator one bit
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)11).(22( BABAfe 

)1.1).(22(2.2 BABABAfs 

)1.1).(22(2.2 BABABAfi 

A2 A1 B2 B1 fs fe fi

0 0 0 0 0 1 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1. A=B si 

A2=B2 et A1=B1

2. A>B si 

A2 > B2 ou (A2=B2 et A1>B1)

3. A<B si 

A2 < B2 ou (A2=B2 et A1<B1)
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• It is possible to implement a 2-bit comparator using 1-bit
comparators and logical gates. One comparator is used to
compare the least significant bits, and another is used to
compare the most significant bits. The outputs of these
two comparators are combined to generate the final
outputs of the overall comparator.

Comparator  1 bit

fs1   fe1   fi1

a1        b1

Comparator  1 bit

fs2   fe2   fi2

a2  b2

Implementation of a 2-Bit Comparator 
using 1-bit Comparator
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1. A=B si 

A2=B2 et A1=B1

2. A>B si 

A2 > B2 ou (A2=B2 and A1>B1)

3. A<B si 

A2 < B2 ou (A2=B2 and A1<B1)
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Comparator with cascading inputs

• We notice that: 

• If A2 > B2 then A > B 

• If A2 < B2 then A < B

• However, if A2 = B2, then we need to consider the 
comparison result of the least significant bits.

• To do this, we add to the comparator inputs that 
indicate the result of the previous comparison.

• These inputs are called cascading inputs.
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Comp

fs    fe    fi 

A2        B2

Es  ( >)
Eg  ( =)
Ei   ( <)

A2 B2 Es Eg Ei fs fe fs

A2>B2 X X X 1 0 0

A2<B2 X X X 0 0 1

A2=B1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

fs= (A2>B2) ou (A2=B2).Es
fi=  ( A2<B2) ou (A2=B2).Ei
fe= (A2=B2).Eg
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Exercice 

• Implement a 4-bit comparator

using cascaded 2-bit comparators?
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Multiplexer

• Definition: A multiplexer is a combinational logic 
circuit that has 2n inputs, n control inputs, and a single 
output. It allows routing the value of the input line 
specified by its control inputs to the output line.
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• Synthesis of the circuit (8x1 multiplexer) example:

0     0    0

E0

Multiplexer
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0     0    1

E1

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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0     1    0

E2

Multiplexer

• Synthesis of the circuit (8x1 multiplexer) example:
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0     1    1

E3

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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0     1    1

E3

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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1     0    0

E4

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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1     0    1

E5

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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1     1    0

E6

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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1     1    1

E7

• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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• Synthesis of the circuit (8x1 multiplexer) example:

Multiplexer
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• The multiplexer is a combinational selector circuit 
that has 2n data inputs, n control inputs, and a single 
output. Its role is to select, using control signals, one 
of the inputs and connect it to the output.

Multiplexer
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Multiplexer
• The multiplexer is a combinational selector circuit 

that has 2n data inputs, n control inputs, and a single 
output. Its role is to select, using control signals, one 
of the inputs and connect it to the output.
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Multiplexer 2 1
• The multiplexer is a combinational selector circuit 

that has 2n data inputs, n control inputs, and a single 
output. Its role is to select, using control signals, one 
of the inputs and connect it to the output.



=S
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Description of the behavior of the 2-to-1 multiplexer: 

The output S takes on the value of the data input: 

• En1 when the selection input Com is active (logic level 1). 

• En2 when the selection input Com is inactive (logic level 0). 
The input Com thus directs either the information arriving 
from input En1 or that arriving from input En2

to the output S.

Multiplexer



=S
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Description of the behavior of the 2-to-1 multiplexer: 

The output S takes on the value of the data input: 

• En1 when the selection input Com is active (logic level 1). 

• En2 when the selection input Com is inactive (logic level 0). 
The input Com thus directs either the information arriving 
from input En1 or that arriving from input En2

to the output S.

Multiplexer
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C1 C0 S

0 0 E0

0 1 E1

1 0 E2

1 1 E3

E3     E2         E1    E0
C0              
C1               Mux 4 1

S

)3.(0.1)2.(0.1)1.(0.1)0.(0.1 ECCECCECCECCS 

Multiplexer 4 1
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C2 C1 C0 S

0 0 0 E0

0 0 1 E1

0 1 0 E2

0 1 1 E3

1 0 0 E4

1 0 1 E5

1 1 0 E6

1 1 1 E7

E7   E6   E5   E4   E3     E2     E1   E0
C0              
C1                    Mux 8 1

C2

)7(0.1.2)6(0.1.2)5(0.1.2)4(0.1.2

)3(0.1.2)2(0.1.2)1(0.1.2)0.(0.1.2

ECCCECCCECCCECCC

ECCCECCCECCCECCCS





Multiplexer 8 1
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One can always generate any logical functions using 
multiplexers and basic logic gates. It is sufficient to connect 
the variables of the function to be generated to the various 
inputs of the multiplexer (standard inputs and control inputs).
Example 1: Implement the following function 

using an 8x1 multiplexer.

Logical functions using multiplexers:
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Logical functions using multiplexers:
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Logical functions using multiplexers:
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0     0    0

If A=0 , B=0 and C=0 Then F=0

0
F=0

0

0  0  0

Logical functions using multiplexers:
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0     0    1

If A=0 , B=0 and C=0 Then F=0

1
F=1

1

0  0  1

Logical functions using multiplexers:
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0     1    0

If A=0 , B=0 and C=0 Then F=0

1
F=1

1

0  1  0

Logical functions using multiplexers:
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0     1    1

If A=0 , B=0 and C=0 Then F=0

1
F=1

1

0  1  1

Logical functions using multiplexers:
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1     0    0

If A=0 , B=0 and C=0 Then F=0

0
F=0

0

0  0  0

Logical functions using multiplexers:
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Example 1: Implement 
The function using a 4x1 multiplexer.

Logical functions using multiplexers:



89

Example 1: Implement the
Function using a 4x1 
multiplexer.

Logical functions using multiplexers:
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Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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F=C

If A=0 and B=0 Then F=C

The 4x1 Mux 
allows Routing
the value of C to 
the output F.

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.
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F=1

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.

If A=0 and B=1 Then F=1

The 4x1 Mux 
allows Routing
the value 1 to 
the output F.
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F=C

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.

If A=1 and B=0 then F=C

The 4x1 Mux 
allows Routing
the value of C to 
the output F.
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F=0

Logical functions using multiplexers:
Example 1: Implement the
Function using a 4x1 
multiplexer.

If A=1 and B=1 then F=0

The 4x1 Mux 
allows Routing
the value 0 to 
the output F.
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Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.
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ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.
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ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.
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ai bi ri-1 ri

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.
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ai bi ri-1 ri

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

ai bi ri-1 Si

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Example: Implementation of a full adder
using 8x1 multiplexers

• We need to use two multiplexers: the first one to implement
the sum function and the other to provide the carry.
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Implementation of the function for: the sum
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Implementation of the function for: the carry
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Implementation of a full adder using 8x1 
multiplexers
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Exercice

• Design the circuit that allows finding the
maximum between two numbers A and B on one
bit using the minimum number of logic gates and
combinational circuits?


