Numerical methods

2023/2024

Series N°1

Exercise 1

Consider the equation $x^3 + x - 4 = 0$

- 1- Show that this equation has a root within the interval [1, 2].
- 2- Is this root unique?
- 3- Find an approximation of this root by the bisection method ($\varepsilon = 10^{-2}$).

Exercise 2

Consider the following equation, $\cos x - x = 0$.

- 1- Show that this equation has a root within the interval [0, 1].
- 2- Find the function g that allows the fixed-point method to converge.
- 3- Find an approximation of this root with a precision equal to 10^{-2} . Take $x_0 = 0.5$

Exercise 3

Consider the equation $f(x) = x^2 + lnx$. with x > 0.

- 1- Show that f(x) admits a root r within $\left[\frac{1}{4}, 1\right]$.
- 2- Show that $f(x) = 0 \Leftrightarrow x = g(x)$ where $g(x) = \exp(-x^2)$.
- 3- Show that g(x) verifies the conditions of the fixed point theorem within $\left[\frac{1}{4},1\right]$.
- **4-** Calculate the first four iterations using this method.

Exercise 4

Find the approximate value of $\sqrt[3]{25}$ using the Newton-Raphson method.

Exercise 5:

Consider the equation $f(x) = 2x^2 + 5 - e^x = 0$

- 1- Show that this equation has a root within the interval [3, 4].
- 2- What will be this root in the fourth iteration if we use the
 - a. The bisection method.
 - b. The Newton-Raphson method.