
حل البرنامج الخطي رقم 1:

المستقيم ∆		
$x_1 + 4x_2 = 0$		
X_1	\mathbf{X}_2	
0	0	
-4	1	

$$\frac{3}{x_2 = 3}$$

المستقيم 2		
$x_1 + 3x_2 = 6$		
X_1	X_2	
0	2	
6	0	

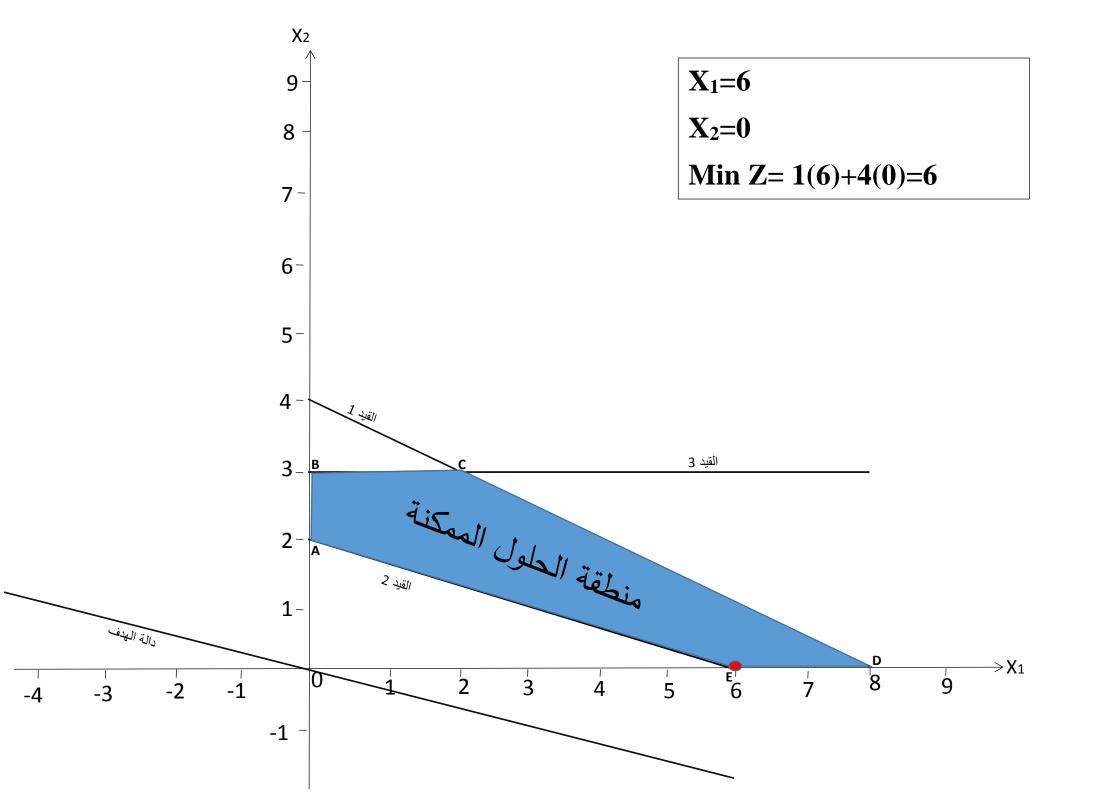
المستقيم 1		
$x_1 + 2x_2 = 8$		
X_1	X_2	
0	4	
8	0	

قيمة دالة الهدف	الإحداثيات (X ₁ , X ₂)	النقطة
8	(0, 2)	A
12	(0, 3)	В
14	(2,3)	C
8	(8, 0)	D
6	(6,0)	Е

بما أن دالة الهدف في حالة التعظيم، فإن النقطة التي تعطينا أكبر قيمة هي نقطة الحل الأمثل. ونجد أن النقطة C هي النقطة التي تُعطي أكبر قيمة لدالة الهدف والبالغة 14 وبالتالي هذه النقطة هي نقطة الحل الأمثل.

 $X_1=2$

 $X_2=3$


 $\mathbf{Max}\ \mathbf{Z} = \mathbf{14}$

حل البرنامج الخطي رقم 2:

المستقيم ∆		
$x_1 + 4x_2 = 0$		
X_1	X_2	
0	0	
-4	1	

المستقيم 2		
$x_1 + 3x_2 = 6$		
X_1 X_2		
0	2	
6	0	

المستقيم 1		
$x_1 + 2x_2 = 8$		
X_1	X_2	
0	4	
8	0	

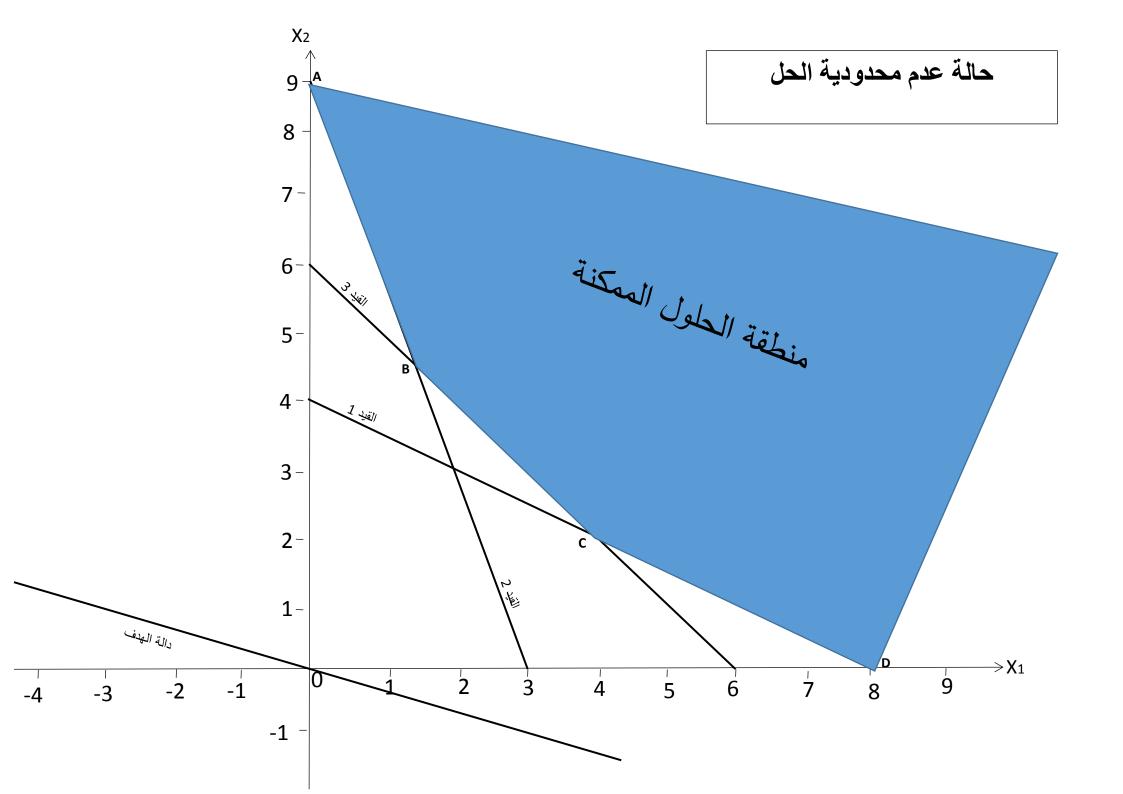
قيمة دالة الهدف	الإحداثيات (X ₁ , X ₂)	النقطة
8	(0, 2)	A
12	(0,3)	В
14	(2,3)	С
8	(8, 0)	D
6	(6, 0)	E

بما أن دالة الهدف في حالة التدنية، فإن النقطة التي تعطينا أقل قيمة هي نقطة الحل الأمثل. ونجد أن النقطة E هي النقطة التي تعطي أقل قيمة لدالة الهدف والبالغة 6 وبالتالي هذه النقطة هي نقطة الحل الأمثل.

 $X_1 = 6$

 $X_2=0$

Min Z = 6

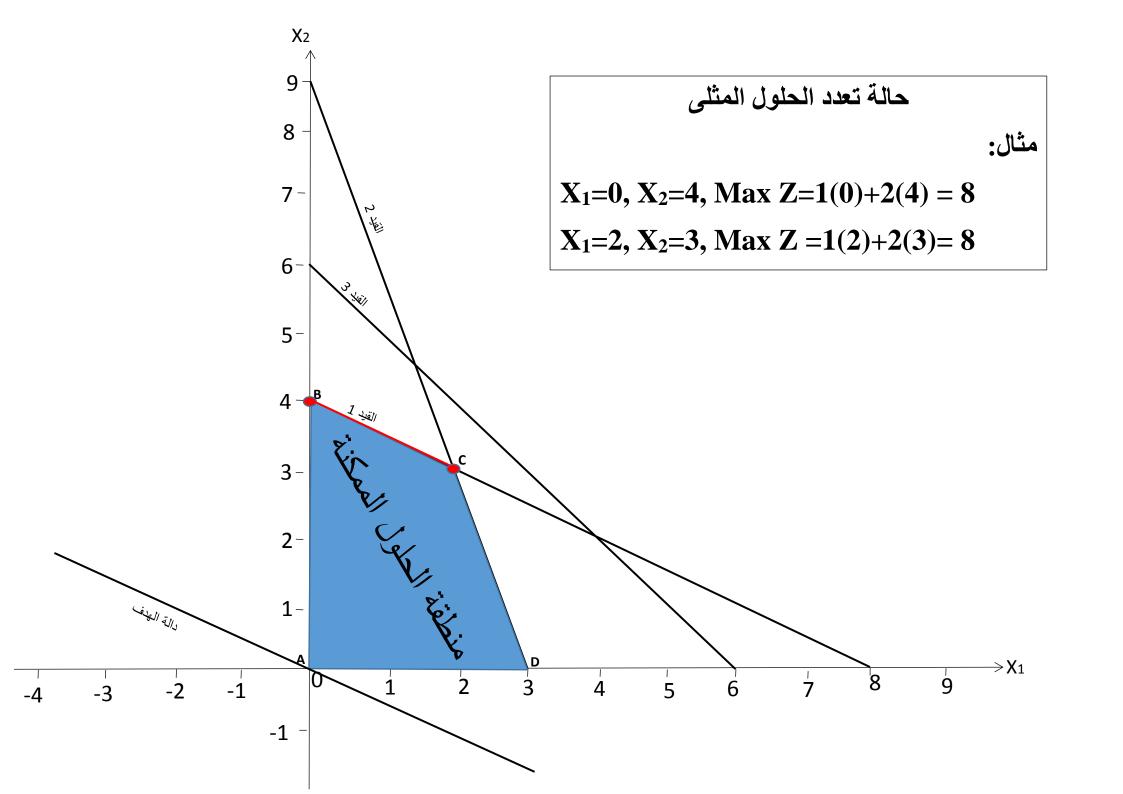

حل البرنامج الخطي رقم 3:

المستقيم 🛆		
$x_1 + 3x_2 = 0$		
X_1	X_2	
0 0		
-3	1	

$$x_1 + x_2 = 6$$
 $X_1 \quad X_2$
 $0 \quad 6$
 $6 \quad 0$

المستقيم 2	
$3x_1 + x_2 = 9$	
\mathbf{X}_{1}	X_2
0	9
3	0

	•	
المستقيم 1		
$x_1 + 2x_2 = 8$		
X_1	X_2	
0	4	
8	0	


حل البرنامج الخطي رقم 4:

المستقيم 🛆		
$x_1 + 2x_2 = 0$		
X_1	X_2	
0	0	
-2	1	

المستقيم 3	
$x_1 + x_2 = 6$	
\mathbf{X}_{1}	X_2
0	6
6	0

المستقيم 2	
$3x_1 + x_2 = 9$	
\mathbf{X}_{1}	X_2
0	9
3	0

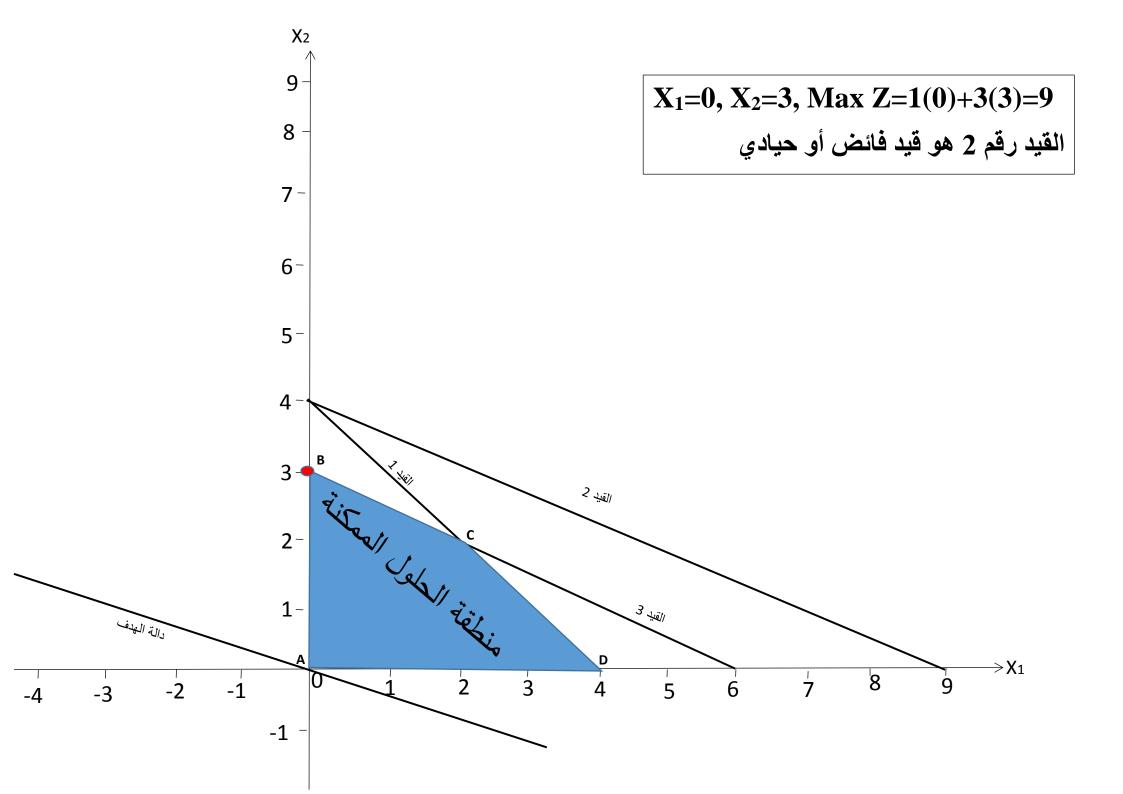
المستقيم 1	
$x_1 + 2x_2 = 8$	
X_1	X_2
0	4
8	0

قيمة دالة الهدف	الإحداثيات (X ₁ , X ₂)	النقطة
0	(0, 0)	A
8	(0, 4)	В
8	(2, 3)	C
3	(3, 0)	D

بما أن دالة الهدف في حالة التعظيم، فإن النقطة التي تعطينا أكبر قيمة هي نقطة الحل الأمثل. ونجد أن النقطتين B وC تعطيان نفس القيمة الكبرى والبالغة 8 وبالتالي فإننا أمام حالة تعدد الحلول حيث أن جميع النقاط إبتداء من النقطة B حتى النقطة C هي نقاط حل مثلى.

النقطة B : X_1 =0, X_2 =4, Max Z=8

النقطة $C: X_1=2, X_2=3, Max Z=8$


حل البرنامج الخطي رقم 5:

المستقيم ∆	
$x_1 + 3x_2 = 0$	
X_1	X_2
0 0	
-3	1

المستقيم 3
$$x_1 + 2x_2 = 6$$
 X_1 X_2 0 3 6 0

المستقيم 2		
$4x_1 + 9x_2 = 36$		
X_1	X_1 X_2	
0	4	
9	0	

المستقيم 1	
$x_1 + x_2 = 4$	
X_1	X_2
0 4	
4	0

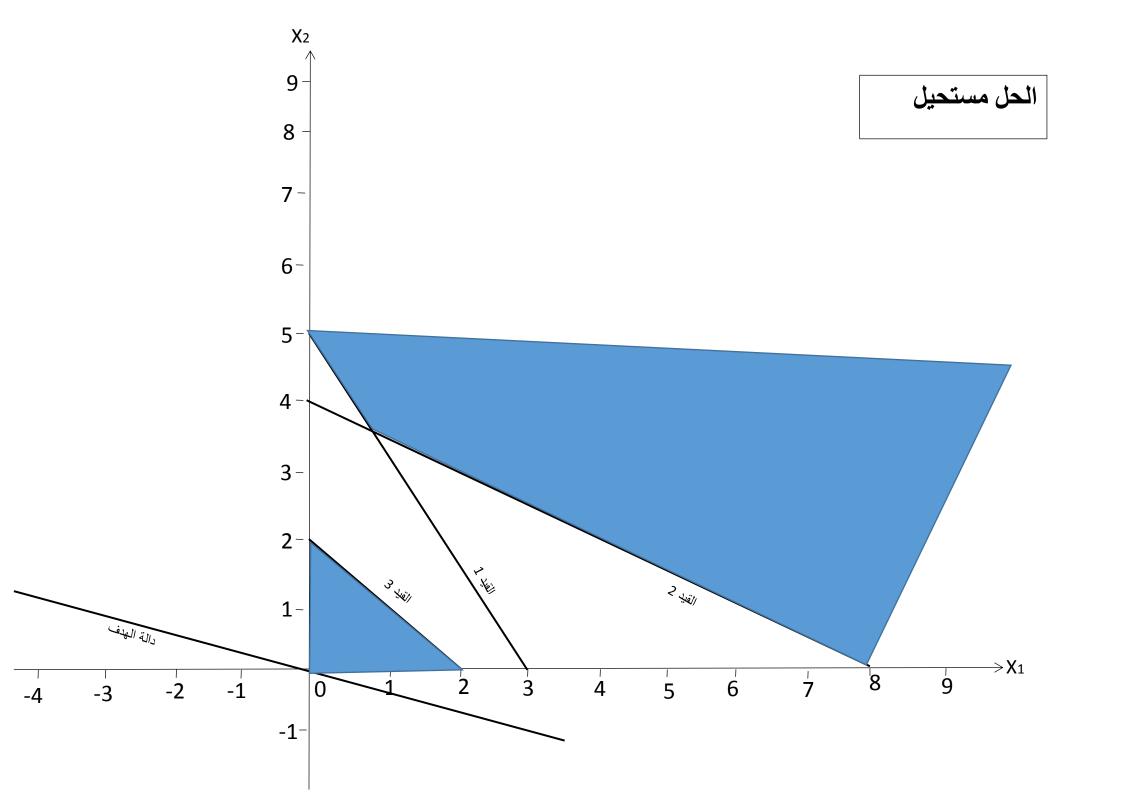
قيمة دالة الهدف	الإحداثيات (X ₁ , X ₂)	النقطة
0	(0, 0)	A
9	(0,3)	В
8	(2, 2)	С
4	(4, 0)	D

بما أن دالة الهدف في حالة التعظيم، فإن النقطة التي تعطينا أكبر قيمة هي نقطة الحل الأمثل. ونجد أن النقطة B هي النقطة التي تُعطي أكبر قيمة لدالة الهدف والبالغة 9 وبالتالي هذه النقطة هي نقطة الحل الأمثل.

 $X_1 = 0$

 $X_2 = 3$

 $\mathbf{Max} \ \mathbf{Z} = \mathbf{9}$


حل البرنامج الخطي رقم 6:

المستقيم ∆	
$x_1 + 4x_2 = 0$	
X_1	\mathbf{X}_{2}
0	0
-4	1

المستقيم 3
$$x_1 + x_2 = 2$$
 X_1 X_2 0 2 2 0

المستقيم 2	
$x_1 + 2x_2 = 8$	
\mathbf{X}_{1}	X_2
0	4
8	0

المستقيم 1	
$5x_1 + 3x_2 = 15$	
X_1 X_2	
0 5	
3	0

