Chapter II :

First principle of thermodynamics

I- Introduction :

In this lecture we shall study the first law of thermodynamics and explore possible thermodynamic processes through which heat can be converted into work.

II- Notion of heat (Q)

- When a container is placed over a fire, the temperature of the water rises. It is said that the heat source has given heat to the water.
- When water cools, it loses heat.

The amount of energy transferred to water is called 'heat'.
it is given by the relation:

$$
\mathrm{Q}=\mathrm{m} . \mathrm{C} \cdot \Delta \mathrm{~T}
$$

C : specific heat

II-1- Specific heat (C) :

is the quantity of heat required to raise the temperature of one gram of a substance by one Celsius degree. The units of specific heat are usually calories or joules per gram per Celsius degree. For example, the specific heat of water is 1 calorie (or 4.186 joules) per gram per Celsius degree. The Scottish scientist Joseph Black, in the 18th century, noticed that equal masses of different substances needed different amounts of heat to raise them through the same temperature interval, and, from this observation, he founded the concept of specific heat.

The SI unit for heat is a form of energy called the joule (J). Heat is frequently also measured in the calorie (cal), which is defined as "the amount of heat required to raise the temperature of one gram of water from 14.5 degrees Celsius to 15.5 degrees Celsius."

II-2- Measuring the Heat :

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. It mainly consists of a metallic vessel made of materials which are good conductors of electricity such as copper and aluminium etc. There is also a facility for stirring the contents of the vessel. This metallic vessel with a
stirrer is kept in an insulating jacket to prevent heat loss to the environment. There is just one opening through which a thermometer can be inserted to measure the change in thermal properties inside.

III-Notion of work (W) :

Work is defined, for mechanical systems, as the action of an external force on an object over a distance.

Consider a cylinder containing a gas at pressure ' P '; the piston has cross-section 'S'.

When an external operator exerts a force on the piston, it moves to the left: the gas then exerts a force ' F ' ; Where: ' F ' is in Newton (N); ' S ' is in square meter (m^{2}).

* Work is equal to the product of force (F) times displacement (dx) according to the equation:

$$
\delta W=\vec{F} \times \overrightarrow{d x}
$$

*The volume (V) represents the surface by a distance (x):

$$
\mathrm{V}=\mathrm{S} . \mathrm{x}
$$

$\delta \mathrm{W}=\mathrm{F} . \mathrm{dx}=\mathrm{P} . \mathrm{S} . \mathrm{dx}$ and

$$
\mathrm{V}=\mathrm{S} \cdot \mathrm{x} \Rightarrow \mathrm{dV}=\mathrm{S} . \mathrm{dx} \Rightarrow \mathrm{dx}=\frac{d V}{S}
$$

$$
\Rightarrow \mathrm{W}=\mathrm{P} \cdot \mathrm{~S} \cdot \frac{d V}{S} \Rightarrow \delta \mathbf{W}=\mathbf{P} \cdot \mathbf{d} \mathbf{V}
$$

III-1- Expression of the work in case of reversible transformation:

Example :

\checkmark When the gas expansion is reversible and this involves the external pressure being less than the internal pressure, by a small extent throughout the expansion process and in this case $\mathrm{P}=\mathrm{P}_{\text {ext }}$.

We have :

$$
W=-\int_{V_{1}}^{V_{2}} P_{e x t} . d V
$$

By integrating the previous equation with gas being considered ideal and consisting of a number of moles, so the law can be used :

$$
\text { Perfect gas } \Rightarrow \mathrm{PV}=\mathrm{nRT}
$$

If the transformation is isothermal :

$$
\begin{aligned}
& W=-\int_{V_{1}}^{V_{2}} \frac{n R T}{V} \cdot d V \\
& \Rightarrow \quad W=-n R T \ln \frac{V_{2}}{V_{1}}
\end{aligned}
$$

From Boyle's Law:
Becomes the previous equation

$$
W=-n R T \ln \frac{P_{1}}{P_{2}}
$$

- Calculation of work graphically :

The work is equal to the area calculated between the curve and the axis of the volumes and the two lines $1 V_{1}$ and $1 V_{2}$

III-2- Expression of the work in case of irreversible transformation:
Example :
\checkmark When the gas expansion is irreversible, this involves a sudden change of pressure, in which case: $\mathrm{P}=\mathrm{P}_{2}$ (final pressure).

We have :

$$
W=-\int_{V_{1}}^{V_{2}} P_{2} \cdot d V
$$

By integrating the previous equation:

$$
W=-P_{2} \int_{V_{1}}^{V_{2}}\left(V_{2}-V_{1}\right)
$$

- Calculation of work graphically :

IV- First principle of thermodynamics :

Internal energy definition is given as:
The energy contained within the system associated with random motions of the particles along with the potential energies of the molecules due to their orientation.

The energy due to random motion includes translational, rotational, and vibrational energy. It is represented as U. So now we can say, since internal energy is a state function and in all the processes shown above the change in internal energy from state, ' a ' to state ' b ' will be the same.

IV-1- Text of the first principle of the thermodynamic :

The first law of thermodynamics is based on the law of conservation of energy, which states that energy cannot be created or destroyed, but can be transferred from one form to another.

Many power plants and engines operate by turning heat energy into work. The reason is that a heated gas can do work on mechanical turbines or pistons, causing them to move. The first law of thermodynamics applies the conservation of energy principle to systems where heat transfer and doing work are the methods of transferring energy into and out of the system. The first law of thermodynamics states that the change in internal energy of a system $\Delta \mathrm{U}$ equals the net heat transfer into the system Q , plus the net work done on the system W . In equation form, the first law of thermodynamics is, $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$.

Where,

- $\Delta \mathrm{U}$ is the internal energy
- Q is the heat added to the system
- W is the work done by the system

Note :

* We have to be very careful with the first law. About half of textbooks, teachers, and professors write the first law of thermodynamics as $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}$ and the other half write it as $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$.
Both equations are correct, and they say the same thing. The reason for the difference is that in the formula $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}_{\text {on gas }}$, we are assuming that W represents the work done on the system, and when we use $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}_{\text {by gas }}$, we are assuming that W represents the work done by the system.

The two different equations are equivalent since, $\mathbf{W}_{\text {on gas }}=-\mathbf{W}_{\text {by gas }}$

When work is done on a system, the work done adds to the internal energy of the system (hence the plus sign in $\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}_{\text {on gas }}$)

When work is done by a system, the work done takes away from the internal energy of the system (hence the minus sign in $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}_{\text {by gas }}$)

* It is a state function that depends only on the equilibrium state the system is in (it does not depend on the path followed by the system during the transformation);
* It is expressed in Joule (J) or calorie (cal);
*. By convention: if $\Delta U>0$, energy is supplied to the system, if $\Delta U<0$, energy is given up by the system.

IV-2-Application to transformations :
IV-2-1-Isochore transformation ($V=$ cte) :

$$
\begin{aligned}
\text { At: } \mathrm{V}=\mathrm{Cte} ; \mathrm{W}=0=\Rightarrow & \Delta \mathrm{U}=\mathrm{Q}_{\mathrm{v}}+0=\Rightarrow \Delta \mathbf{U}=\mathbf{Q _ { \mathbf { V } }} \\
& \Delta \mathbf{U}=\mathbf{Q}_{\mathbf{v}}=\mathbf{m} . \mathbf{C} \mathbf{v} \cdot \Delta \mathbf{T} ; \Delta \mathbf{U}=\mathbf{Q}_{\mathbf{v}}=\mathbf{n} . \mathbf{C}_{\mathbf{v}} \cdot \Delta \mathbf{T}
\end{aligned}
$$

IV-2-2-Isobaric transformation ($\mathrm{P}=$ cte) :

According to the first principle :

$$
\begin{gathered}
\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W} \\
\mathrm{P}=\text { Cte } \Rightarrow W=-\int_{V_{1}}^{V_{2}} P . d V=-P\left(V_{2}-V_{1}\right)
\end{gathered}
$$

So :

$$
\Delta U=-P\left(V_{2}-V_{1}\right)+Q_{P}
$$

\checkmark Enthalpy :

During the transformation being made at constant pressure it can be written :
According to the first principle :

$$
\begin{gathered}
\Delta \mathrm{U}=\mathrm{Q}_{\mathrm{P}}+\mathrm{W}_{\mathrm{P}} \\
=\mathrm{Q}_{\mathrm{P}}-\mathrm{P} \Delta \mathrm{~V} \Rightarrow \mathrm{Q}_{\mathrm{P}}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{~V}=\mathrm{U}_{2}-\mathrm{U}_{1}+\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
=\left(\mathrm{U}_{2}+\mathrm{P} \mathrm{~V}_{2}\right)-\left(\mathrm{U}_{1}+\mathrm{P} \mathrm{~V}_{1}\right)
\end{gathered}
$$

And from it we know a new H function so that:

$$
\mathrm{H}=\mathrm{U}+\mathrm{P} \mathrm{~V}
$$

the equation becomes:

$$
\mathrm{Q}_{\mathrm{P}}=\mathrm{H}_{2}-\mathrm{H}_{1}=\Delta \mathrm{H} \Rightarrow \mathbf{Q}_{\mathbf{P}}=\Delta \mathbf{H}
$$

Note :

U : is a state function, $\mathrm{P} . \mathrm{V}$: is a state function, so H is a state function

\checkmark Heat capacity :

Mass or molar heat capacity or mass or molar specific heat is the heat required to raise the temperature of a unit mass or mole of a substance by one degree.
It is measured at constant pressure $\left(\mathrm{C}_{\mathrm{P}}\right)$ or constant volume $\left(\mathrm{C}_{\mathrm{V}}\right)$.
The heat capacities C_{p} and C_{V} of a pure body are respectively the derivatives of its enthalpy and internal energy with respect to temperature:

$$
\begin{aligned}
& C_{P}=\left[\frac{\delta Q}{d T}\right]_{P}=\frac{\delta Q_{p}}{d T}=\frac{d H}{d T} \\
& C_{V}=\left[\frac{\delta Q}{d T}\right]_{V}=\frac{\delta Q_{V}}{d T}=\frac{d U}{d T}
\end{aligned}
$$

The amount of heat required to raise the temperature of ' n ' moles of 1 pure substance from T1 to T2 is:

At : $\mathrm{P}=\mathrm{Cte}: \delta \mathrm{Q}_{\mathrm{P}}=\mathrm{dH}=\mathrm{n} . \mathrm{C}_{\mathrm{P}} . \mathrm{dT} \Rightarrow \Delta \mathrm{H}=\mathrm{Q}_{\mathrm{P}}=$

$$
\Delta \mathrm{H}=n \int_{T_{1}}^{T_{2}} C_{p} \cdot d T
$$

At $: \mathrm{V}=\mathrm{Cte}: \delta \mathrm{QV}=\mathrm{dU}=\mathrm{n} . \mathrm{Cv} \cdot \mathrm{dT} \Rightarrow \Delta \mathrm{U}=\mathrm{Qv}=$

$$
\Delta \mathrm{U}=n \int_{T_{1}}^{T_{2}} C_{V} \cdot d T
$$

The amount of heat required to raise the temperature of ' m ' grammes of 1 pure substance from T1 to T2 is:

At : $\mathrm{P}=\mathrm{Cte}: \Delta \mathrm{H}=\mathrm{Q} \mathrm{P}=m \int_{T_{1}}^{T_{2}} C_{p} . d T$
At : V $=\mathrm{Cte}: \Delta \mathrm{U}=\mathrm{QV}=m \int_{T_{1}}^{T_{2}} C_{v} . d T$
Note:
Both C_{p} and C_{v} functions relate to temperature in shape: $\mathrm{aT}^{2}+\mathrm{bT}+\mathrm{C}$
In the case of C_{p} and C_{v} fixed numbers independent of temperature, it can be written:

$$
\Delta \mathrm{U}=\mathrm{n} C_{V} \cdot \Delta T, \quad \Delta \mathrm{H}=\mathrm{n} C_{p} \cdot \Delta T
$$

\checkmark Relation between C_{P} and C_{V} (MAYER relation) :

We have: $\mathrm{dH}=\mathrm{dU}+\mathrm{d}(\mathrm{P} . \mathrm{V}) \ldots$...(1)
$\mathrm{dH}=\mathrm{n} . \mathrm{C}_{\mathrm{p}} . \mathrm{dT}$
$\mathrm{dU}=\mathrm{n} . \mathrm{C}_{\mathrm{V}} \mathrm{dT}$
By exploiting equations: (1), (2) and (3) :
$\mathrm{dH}=\mathrm{dU}+\mathrm{d}(\mathrm{PV}) \Rightarrow \mathrm{n} . \mathrm{Cp} . \mathrm{dT}=\mathrm{n} . \mathrm{Cv} \mathrm{dT}+\mathrm{d}(\mathrm{PV}) ; \quad(\mathrm{P} . \mathrm{V}=\mathrm{n} . \mathrm{R} . \mathrm{T})$
$\Rightarrow \mathrm{n} . \mathrm{Cp} . \mathrm{dT}=\mathrm{n} . \mathrm{Cv} \mathrm{dT}+\mathrm{d}(\mathrm{n} . \mathrm{R} . \mathrm{T})=\mathrm{n} . \mathrm{Cv} \mathrm{dT}+\mathrm{nRdT}$ (ividing by ' ndT ')
so we'll have: $\mathrm{Cp}=\mathrm{Cv}+\mathrm{R} \Rightarrow \mathbf{C p}-\mathbf{C v}=\mathbf{R}$ MAYER Relation

- γ is the ratio between C_{p} and $C_{V} ; \gamma=\frac{C_{P}}{C_{V}}>1(\gamma$ is called the adiabatic constant $)$.

IV-2-3-Isothermal transformation ($\mathrm{T}=$ cte):
Characteristic equation
In Initial state: $\mathrm{P}_{1} . \mathrm{V}_{1}=\mathrm{n}$. R.T
In the final state: $P_{2} . V_{2}=n$. R.T....(2)
Expression of work

$$
\begin{equation*}
\mathrm{P} \neq \text { Cte and } \mathrm{P} . \mathrm{V}=\mathrm{n} . \mathrm{R} . \mathrm{T} \Rightarrow \mathrm{P}=\frac{n R T}{V} . \tag{2}
\end{equation*}
$$

Replacing (2) in (1) gives:
$W=-\int_{1}^{2} \mathrm{n} . \mathrm{R} . \mathrm{T} \cdot \frac{d V}{V}=-n R T \ln \frac{V_{2}}{V_{1}}=-n R T \ln \frac{P_{1}}{P_{2}} ;\left(S\right.$ Since $\left.\frac{P_{1}}{P_{2}}=\frac{V_{2}}{V_{1}}\right)$

$$
\begin{aligned}
& W=-n R T \ln \frac{V_{2}}{V_{1}} \\
& W=-n R T \ln \frac{P_{1}}{P_{2}}
\end{aligned}
$$

Expression of heat quantity :
Since $U=f(T)$: so $\Delta U=0 \Longrightarrow Q+W=0 \Longrightarrow Q=-W$

$$
\begin{aligned}
& Q=n R T \ln \frac{V_{2}}{V_{1}} \\
& Q=n R T \ln \frac{P_{1}}{P_{2}}
\end{aligned}
$$

Expression of internal energy :

Since $U=f(T):$ so $\quad \boldsymbol{\Delta U}=\mathbf{0}$

Expression of enthalpy :
Since $H=f(T)$: so $\quad \Delta H=\mathbf{0}$

IV-2-4-Adiabatic transformation $(\mathbb{Q}=0)$:
An adiabatic transformation is one that takes place without any change in heat $(\mathbf{Q}=\mathbf{0})$.

We have:

$$
\begin{gathered}
d U=\delta Q+\delta W=0+\delta W \Rightarrow d U=\delta W=-P d V \\
\Delta U=W=\int n C_{V} d T=-\int P d V
\end{gathered}
$$

This equation can be written:

$$
n C_{V} d T=-P d V
$$

According to the ideal gas relationship:

$$
\begin{aligned}
n C_{V} d T & =-\frac{n R T}{V} d V \\
\frac{d T}{T} & =-\frac{R}{C_{V}} \cdot \frac{d V}{V}
\end{aligned}
$$

According to Meyer's relationship

$$
C_{p}-C_{V}=R
$$

Dividing both sides of the equation by C_{V} :

$$
\frac{C_{P}-C_{V}}{C_{V}}=\frac{R}{C_{V}}=\frac{C_{P}}{C_{V}}-1=\gamma-1
$$

So:

$$
\frac{d T}{T}=-(\gamma-1) \frac{d V}{V}
$$

By integration we get :

$$
\operatorname{Ln} \mathrm{T}+\ln \mathrm{V}^{\gamma-1}=K \Rightarrow
$$

$$
T \mathrm{~V}^{\gamma-1}=K^{\prime}
$$

During reversible adiabatic transformation, $T \mathrm{~V}^{\gamma-1}$ the remains constant and writes the previous relationship:

$$
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1}
$$

It's the first equation of Laplace.

The adiabatic equation of state can also be described:

* Temperature as a function of volume;
* Pressure as a function of pressure.
- We have: $\mathrm{P} . \mathrm{V}=\mathrm{n} . \mathrm{R} . \mathrm{T} \Rightarrow V=\frac{n R T}{P}$

By replacing in the relation:

$$
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1}
$$

We get the second equation of Laplace:

$$
\boldsymbol{T}_{i}{ }^{\gamma} \boldsymbol{P}_{\boldsymbol{i}}{ }^{1-\gamma}=\boldsymbol{T}_{f}{ }^{\gamma} \boldsymbol{P}_{\boldsymbol{f}}{ }^{1-\gamma}
$$

- We have: $\mathrm{P} . \mathrm{V}=\mathrm{n} . \mathrm{R} . \mathrm{T} \Rightarrow T=\frac{P V}{n R}$

By replacing in the relation:

$$
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1}
$$

We get the third equation of Laplace:

$$
\boldsymbol{P}_{\boldsymbol{i}} \boldsymbol{V}_{\boldsymbol{i}}^{\gamma}=\boldsymbol{P}_{\boldsymbol{f}} \boldsymbol{V}_{\boldsymbol{f}}^{\gamma}
$$

\checkmark Expression of adiabatic transformation work:

Based on the first principle of Termodynamics:

$$
\delta U=\delta Q+\delta W=\delta W
$$

As $Q=0$:

$$
\begin{gathered}
W=\Delta U=\int_{T_{f}}^{T_{i}} n C_{V} d T=n C_{V}\left(T_{f}-T_{i}\right) \\
T_{f}=\frac{P_{f} V_{f}}{n R}, \quad T_{i}=\frac{P_{i} V_{i}}{n R}
\end{gathered}
$$

With compensation we find:

$$
\begin{gathered}
W=n C_{V}\left(\frac{P_{f} V_{f}}{n R}-\frac{P_{i} V_{i}}{n R}\right) \\
\frac{C_{V}}{R}=(\gamma-1)^{-1} \\
\boldsymbol{W}_{\boldsymbol{a d}}=\frac{\mathbf{1}}{\boldsymbol{\gamma - 1}}\left(\boldsymbol{P}_{f} \boldsymbol{V}_{\boldsymbol{f}}-\boldsymbol{P}_{\boldsymbol{i}} \boldsymbol{V}_{\boldsymbol{i}}\right)
\end{gathered}
$$

Note :

For diatomic gases : $\gamma=\mathbf{7 / 5}=\mathbf{1 , 4}$
For monoatomic gases : $\boldsymbol{\gamma}=\mathbf{5} / \mathbf{3}=\mathbf{1 , 6 6}$

The following table shows recipes for calculating $Q, W, \Delta U$, and ΔH for an ideal gas undergoing a reversible change along the specified pathway.

Table 1: Thermodynamics Properties for a Reversible Expansion or Compression.

Pathway	\boldsymbol{Q}	\boldsymbol{W}	$\boldsymbol{\Delta U}$	$\boldsymbol{U} \boldsymbol{H}$
Isothermal	$Q=-W$	$-n R T \ln \left(V_{2} / V_{1}\right)$	0	0
Isochoric	$n \int_{T_{1}}^{T_{2}} C_{V} \cdot d T$	0	$\Delta U=Q_{V}$	$n \int_{T_{1}}^{T_{2}} C_{p} \cdot d T$
Isobaric	$n \int_{T_{1}}^{T_{2}} C_{p} \cdot d T$	$-p \Delta V$	$n \int_{T_{1}}^{T_{2}} C_{V} \cdot d T$	$n \int_{T_{1}}^{T_{2}} C_{p} \cdot d T$
Adiabatic	0	$\frac{1}{\gamma-1}\left(P_{f} V_{f}-P_{i} V_{i}\right)$	$n \int_{T_{1}}^{T_{2}} C_{V} \cdot d T$	$n \int_{T_{1}}^{T_{2}} C_{p} \cdot d T$
$=\Delta U$	$=W$			

For the ring :

$$
\begin{gathered}
\Delta U_{c y c l e}=\Delta H_{c y c l e}=0 \\
Q_{c y c l e}=\sum \boldsymbol{Q}=-W_{\text {cycle }}
\end{gathered}
$$

