University Center of Mila
Department of ST

MATHEMATICS 2
WORK SHEET 01

Exercise 1. We define the matrices :

$$
A=\left(\begin{array}{cc}
0 & 2 \\
4 & 1 \\
3 & -2 \\
5 & 0 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccccc}
1 & 2 & -1 & 0 & 7 \\
0 & 1 & -2 & 1 & 2 \\
0 & 4 & 1 & -1 & 1
\end{array}\right) \quad C=\left(\begin{array}{cccc}
1 & 2 & -1 & 3 \\
2 & 0 & 3 & -1
\end{array}\right)
$$

Is it possible to calculate the products $A B C, C B A, B A C$? If yes, find them with tow methods (verify the associativity of the product).

Exercise 2. Let A be the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

In each case, find the matrix A such that :
(a) $A^{2}=A$.
(b) $A^{2}=I_{2}$.
(c) $A B=B A$, and $B=\left(\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right)$.

Exercise 3. Let a be a non zero real number, and let

$$
A=\left(\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right)
$$

be a matrix of order 2 . Calculate A^{n} the power of $\mathrm{A}(n \in \mathbb{Z})$.

Exercise 4.

(a) Find the inverse matrix of the next matrices.

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cc}
2 & -3 \\
4 & 5
\end{array}\right) \quad A_{2}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& A_{3}=\left(\begin{array}{ccc}
1 & 5 & -3 \\
2 & 11 & 1 \\
2 & 9 & -11
\end{array}\right) \quad A_{4}=\left(\begin{array}{ccc}
1 & 5 & -3 \\
2 & 11 & 1 \\
1 & 4 & -10
\end{array}\right) .
\end{aligned}
$$

(b) Suppose

$$
A=\left(\begin{array}{ccc}
2 & 5 & -3 \\
2 & 1 & 1 \\
2 & 0 & -1
\end{array}\right)
$$

Prove that A verify the relation $A^{3}-2 A^{2}-5 A-24 I_{3}=0$. Deduce the inverse matrix of A .

Exercise 5. Let $A=\left(a_{i j}\right)$ be a skew- symmetric matrix of order $n\left(A=\left(a_{i j}\right)\right.$ is a square matrix of order n such that $A=A^{T}$.)
(a) Calculate $|A|$ for $\mathrm{n}=2,3,4$.
(b) Prove that $|A|=0$ if n is an odd number.

Exercise 6. Let A be a matrix of order n . Using $|A|$, write $|\operatorname{adj}(A)|$.

