مقياس: تحليل السلاسل الزمنيةأ. لمزاودة

التمرين الأول: ليكن لديك السلسلة الزمنية التالية: (8 نقاط)

T	1	2	3	4	5	6	7	8	9	10	11	12
У	2	3	-1	3	2	3	-1	3	2	3	-1	3

المطلوب: (النتائج كلها تكون في جدول واحد مع أخذ رقمين بعد الفاصلة.).

- K=4 وK=3 ، K=2 المركزية لما K=4 وK=4 وK=4
- 2. على أي أساس تبرر حساباتك وتموضع السلاسل المحولة (الجديدة)؛
- 3. قم باختبار الفرضيتين التاليتين من خلال نقطة الانعطاف (H0: السلسلة yعشوائية، H1: السلسلة لها مركبة)؛
 - $\alpha = 0.7, y_0 = y_1$ قم بتمهيد السلسلة y قميدا أسيا بسيطا، حيث 4

التمرين الثانى: ليكن لديك العملية التالية. (6 نقاط)

$$y_t = 2.4 y_{t-1} - 0.8 y_{t-2} + \varepsilon_t$$

المطلوب:

- 1. ما نوع هذه العملية، حدد معالمها.
- . $y_{t-i} = B^i y_t$ عد كتابة هذه السيرورة بإدخال معامل التأخير B . عد كتابة هذه السيرورة أ
 - 3. أوجد جذري المعادلة المميزة.
 - 4. هل العملية yt مستقرة، لماذا.

التمرين الثالث: لتكن لديك العملية التالية. (6 نقاط)

$$y_t = \varepsilon_t - 0.5\varepsilon_{t-1}$$

المطلوب:

- 1. ما نوع هذه العملية، حدد معالمها.
 - 2. أوجد دالة الارتباط الذاتي.
- θ بين أنه توجد قيمة أخرى للمعلمة θ تحقق هذه الدالة.
 - 4. ما هي القيمة التي تحقق شرط الانعكاس.

بالتوفيق للجميع

مقياس: تحليل السلاسل الزمنيةأ. لمزاودة

الإجابة النموذجية الإجابة النموذجية . 1. حساب المتوسطات المتحركة. (أي نتيجة خاطئة العلامة 0)

T	У	CMA(2)	MA(3)	CMA(4)	AY	الإشارة	Υ
1	2						2
2	3	1.75	1.33		1	+	2.70
3	-1	1	1.67	1.75	-4	-	0.11
4	3	1.75	1.33	1.75	4	+	2.13
5	2	2.5	2.67	1.75	-1	-	2.04
6	3	1.75	1.33	1.75	1	+	2.71
7	-1	1	1.67	1.75	-4	-	0.11
8	3	1.75	1.33	1.75	4	+	2.13
9	2	2.5	2.67	1.75	-1	-	2.04
10	3	1.75	1.33	1.75	1	+	2.71
11	-1	1	1.67		-4	-	0.11
12	3				4	+	2.13

2. تبرير الحسابات والتموضع: (الإجابة تكون من الناحية النظرية)

••••••••••••••••••••••••••••••••••••••	<u> </u>
لما يكون K فردي نقوم بحساب MA	لما يكون K زوجي نقوم بحساب CMA كما يلي:
يلي: يعتبر متوسط مركزي. 1 ن	1ن
1	1 ,, ,,
$MA(k) = \frac{1}{k}(y_1 + y_2 + \dots + y_k)$	$CMA(k) = \frac{1}{k} \left(\frac{y_1}{2} + y_2 + y_3 + \dots + y_k + \frac{y_{k+1}}{2} \right)$
(K+1)	$\frac{(K+1)+1}{2}$ التموضع: K+1 حد زائد 1 ثم نقسم على 2؛
2	التموضع. ١٦٦ حد رائد ١٢م نقسم على 2.

3. اختبار الفرضتين:

- Δy نقوم بحساب الفروقات Δy :
 - نحدد إشارة الفروقات؛
- نحسب عدد مرات تغير الإشارة +، وهذا من أجل تحديد U=11؛
 - $Z = \frac{U \mu_u}{\sigma_u}$:میث: $Z = \frac{U \mu_u}{\sigma_u}$ نقوم بحساب

$$Z = \frac{U - \mu_U}{\sigma_U} = \frac{U - (2\frac{(T-2)}{3})}{\sqrt{\frac{16T - 29}{90}}} = \frac{11 - (\frac{20}{3})}{\sqrt{\frac{16(12) - 29}{90}}} = \frac{4.33}{\sqrt{1.811}} = 3.21$$

مقياس: تحليل السلاسل الزمنيةأ. لمزاودة

الفرضيات:

نلاحظ أن: $ Z = 3.21 > 1.96$ وبالتالي نرفض $ Z $ وبالتالي نرفض $ Z $	H0: السلسلة عشوائية
السلسلة لها مركبة اتجاه عام. 1 ن	H1: السلسلة لها مركبة

4. التمهيد الأسى البسيط: 1ن

$$\alpha = 0.7 \Rightarrow (1 - \alpha) = 0.3$$

$$y_{t} = \alpha y_{t} + (1 - \alpha) y_{t-1}$$

$$y_{1} = 0.7(2) + (0.3) y_{0} = 2$$

$$y_{2} = 0.7(3) + (0.3) y_{1} = 2.1 + (0.3 \times 2) = 2.7....$$

التمرين الثانى:

$$y_{t} = 2.4 y_{t-1} - 0.8 y_{t-2} + \varepsilon_{t}$$

1. تعرف هذه السيرورة على أنها عملية انحدار ذاتي من الدرجة الثانية؛ أي AR(2) ، أهم معالمها هي: 1 ن $AR(p) \to p = 2, \phi_1 = 2.4, \phi_2 = -0.8$

2. إدخال معامل التأخير B:

$$y_{t} = 2.4 y_{t-1} - 0.8 y_{t-2} + \varepsilon_{t}$$

$$y_{t} = 2.4 B y_{t} - 0.8 B^{2} y_{t} + \varepsilon_{t}$$

$$y_{t} - 2.4 B y_{t} + 0.8 B^{2} y_{t} = \varepsilon_{t}$$

$$y_{t} (1 - 2.4 B + 0.8 B^{2}) = \varepsilon_{t}$$

1 ن

3. جذري المعادلة المميزة:

نحسب G1, G2

$$G_1 = \frac{1}{2}(\phi_1 + \sqrt{{\phi_1}^2 + 4\phi_2}) = 2$$

$$G_2 = \frac{1}{2}(\phi_1 - \sqrt{{\phi_1}^2 + 4\phi_2}) = 0.4$$

10

عنا يمكن كتابة المعادلة المميزة كما يلى:

أو نحل حل المعادلة نحل المعادلة من الدرجة الثانية لنجد الجذرين:

$$B_1 = \frac{1}{2} = 0.5$$
 $B_2 = \frac{5}{2} = 2.5$

مقياس: تحليل السلاسل الزمنيةأ. لمزاودة

4. السيرورة غير مستقرة لأن القيمة المطلقة لأحد الجذرين أقل من 1؛ أي: $|B_1| < 1$.

التمرين 3:

$$y_t = \varepsilon_t - 0.5\varepsilon_{t-1}$$

- ان الدجة الأولى؛ معالمها هي: 1 ن MA(q) عبارة عن عملية متوسطات المتحركة المتحركة MA(q) عبارة عن عملية متوسطات المتحركة الم
 - 2. دالة الارتباط الذاتي: 2ن

$$\rho(k) = \begin{cases} \frac{-\theta}{1+\theta^2}, k=1\\ 0, k>1 \end{cases} \Rightarrow \begin{cases} \rho(1) = \frac{-0.5}{1.25} = -0.4\\ \rho(k) = 0, k>1 \end{cases}$$

 θ . إيجاد قيمة أخرى لـ θ .

$$\frac{-\theta}{1+\theta^2} = -0.4 \Rightarrow -\theta = -0.4 - 0.4\theta^2$$
$$-\theta + 0.4 + 0.4\theta^2 = 0$$
$$0.4 - \theta + 0.4\theta^2 = 0$$

نقوم بحل المعادلة من الدرجة الثانية: نجد أن : $\theta_1 = 0.5, \theta_2 = 2$. $\frac{1}{1}$

 $:\theta_2=2$ نأخذ

$$\rho(k) = \begin{cases} \frac{-\theta}{1+\theta^2}, k=1\\ 0, \ldots, k>1 \end{cases} \Rightarrow \begin{cases} \rho(1) = \frac{-2}{5} = -0.4\\ \rho(k) = 0, k>1 \end{cases}$$

هذا يعني أن القيمة $\,\theta_2=2\,$ تعطي نفس دالة الارتباط الذاتي والتي تعطيها $\,\theta_1=0.5\,$ أي:

$$\rho(k) = \begin{cases} -0.4, k = 1\\ 0, k = 2, 3, .. \end{cases}$$

لأنها أقل من $\mathbf{1.1}$ القيمة التي تحقق شرط الانعكاس هي $\theta_1=0.5$ لأنها أقل من $\mathbf{1.1}$ ن