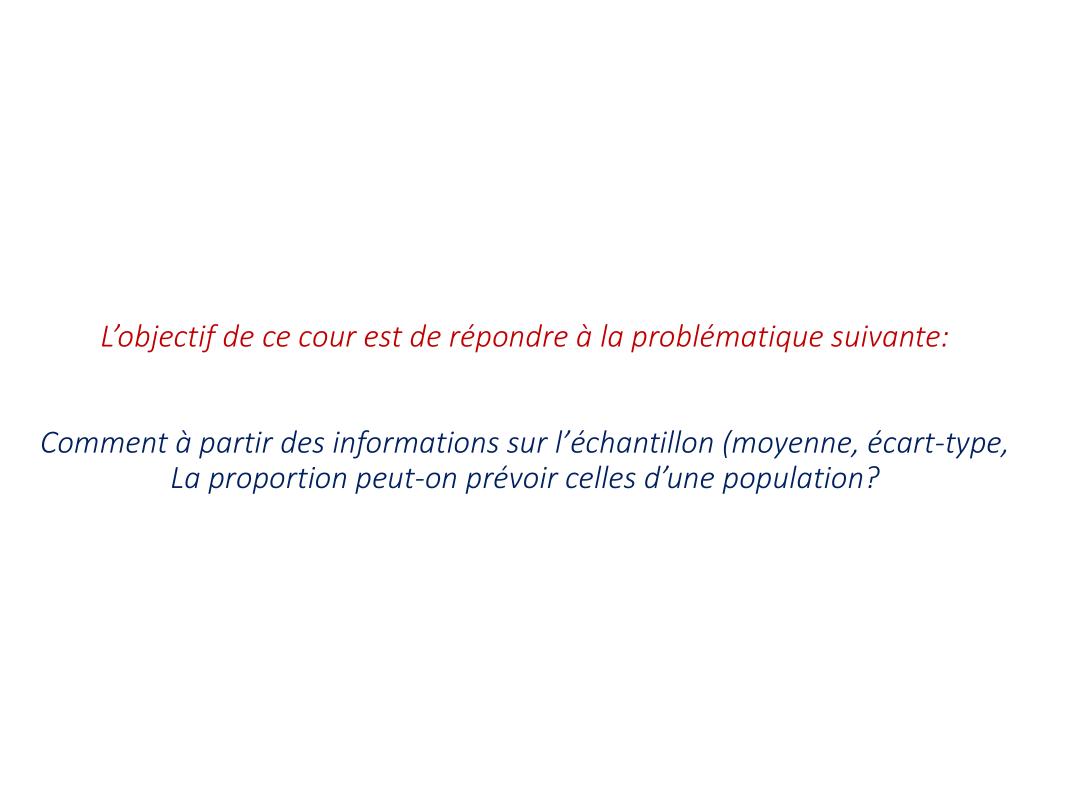
Théorie de l'estimation Théorie de l'estimation



Problématique

X variable aléatoire d'étude, une population mère caractérisée par deux paramètres exactes (moyenne μ ou écart-type σ) ou encore une fréquence P d'un caractère dans cette population , un échantillon représentatif issu de cette population. La distribution de X dans la population est normale ou quelconque.

L'objectif de la théorie de l'estimation est de répondre à la problématique suivante : comment à partir des informations (moyenne m ou proportion \tilde{P}) calculées sur un échantillon estimer celles d'une population ?

Notons que

Nous distinguerons deux cas:

- \blacktriangleright On estime la moyenne μ d'une distribution définie sur la population
- \triangleright On estime la proportion P.

Vocabulaire

- μ la moyenne théorique dans la population, c'est la valeur attendue
- $ightharpoonup ar{X}$ est la variable aléatoire qui est l'estimateur de μ , c'est la moyenne empirique.
- > m est la moyenne de l'échantillon observée.
- La loi de \overline{X} est la loi de probabilité de la moyenne empirique \overline{X} , sa distribution théorique, la distribution d'échantillonnage des moyennes.

1. Estimation et Estimations ponctuelles

l'estimation ponctuelle consiste à donner une valeur unique du paramètre, soit Φ un estimateur de θ .

On définie

$$BIAIS = E(\Phi) - \theta$$

1. Estimation sans biais

Si Biais = 0 (c'est-à-dire $E(\Phi) = \theta$)

Alors, l'estimateur est dit sans biais ou non biaisé

Exemple: $E(\bar{X}) = \mu$ (Résultat de théorie d'échantillonnage)

Alors \overline{X} est donc un estimateur sans biais de μ m la moyenne de l'échantillon observée est une estimation ponctuelle de μ

Exemple

- Pour estimer la moyenne inconnue d'une population μ, on prélève un échantillon et on calcule la moyenne de cet échantillon.
- \triangleright Cette moyenne d'échantillon est une <u>estimation</u> ponctuelle de la moyenne μ .

Attention!!

 $ightharpoonup ilde{S}$ l'écart-type de l'échantillon n'est pas un estimateur sans biais de σ

Exemple

 \triangleright Pour estimer l'écart-type d'une population σ , on prélève un

échantillon et on calcule l'écart-type corrigé $S = \sqrt{\frac{n}{n-1}}\tilde{S}$ de cet échantillon.

Cet écart-type corrigé de l'échantillon est une estimation ponctuelle de l'écart-type σ .

Remarque

$$\geq$$
 L'écart-type de l'échantillon $\tilde{S} = \sqrt{\frac{\sum (x_i - m)^2}{n}}$

$$rac{\Gamma'\acute{e}cart-type\ corrig\'{e}\ S} = \sqrt{\frac{\Sigma(x_i-m)^2}{n-1}}$$

Exemple

- Pour estimer la fréquence P inconnue d'un caractère dans une population, on prélève un échantillon et on calcule la fréquence d'apparition de ce caractère dans l'échantillon.
- Cette fréquence d'apparition est une estimation ponctuelle de la fréquence P.

Estimation par intervalle de confiance de la moyenne :

L'estimation par intervalle de confiance *I* consiste à construire un intervalle à l'intérieur duquel le paramètre se trouve avec une probabilité donnée.

$$\mu \in I = \left[m - \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}}; m + \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \right]$$

- $\square \mu = m \pm \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} = m \pm erreur$
- \square m le centre de l'intervalle de confiance.
- \Box l'erreur = demi-longueur de l'intervalle = $\bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}}$.
- $\square P_r(\mu \in I) = 1 \alpha$

Remarque:

 $ightharpoonup ar{Z}_{lpha}$ est calculé de la table 2 (table de l'écart réduit)

 $ightharpoonup P_r(\mu \in I) = 1 - \alpha$ (Cette formule est une conséquence du théorème de la limite centrale)

Population infinie <u>avec ou sans remise</u> Population finie <u>avec remise</u>

Cas1: X suit la loi normale $N(\mu; \sigma)$ et σ connu

$$I = \left[m - \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}}; m + \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \right]$$

cas2

X suit la loi normale $N(\mu; \sigma)$ et σ inconnu, on l'estime par l'estimation

ponctuelle
$$S = \sqrt{\frac{n}{n-1}}\tilde{S}$$

Nous distinguerons deux situations :

Pour $n \geq 30$, on \bar{Z}_{α} cherche dans la table Normale :

$$I = \left[m - \bar{Z}_{\alpha} \frac{S}{\sqrt{n}}; m + \bar{Z}_{\alpha} \frac{S}{\sqrt{n}} \right]$$

Pour n < 30 , on \bar{t}_{α} cherche dans la table de Student :

$$I = \left[m - \overline{t}_{\alpha} \frac{S}{\sqrt{n}}; m + \overline{t}_{\alpha} \frac{S}{\sqrt{n}} \right]$$

Cas3

X suit la loi quelconque : il faut que : $n \ge 30$

Pour σ connu, on cherche $ar{Z}_{lpha}$ dans la table Normale :

$$I = \left[m - \overline{Z}_{\alpha} \frac{\sigma}{\sqrt{n}}; m + \overline{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \right]$$

Pour σ inconnu, on cherche \bar{Z}_{α} dans la table Normale:

$$I = \left[m - \overline{Z}_{\alpha} \frac{S}{\sqrt{n}}; m + \overline{Z}_{\alpha} \frac{S}{\sqrt{n}} \right]$$

Attention!!

Population <u>finie</u> tirage <u>sans remise</u>

On ajoute le facteur d'exhaustivité

$$\sqrt{\frac{N-n}{N-1}}$$

Population finie et tirage <u>exhaustif</u> (sans remise)

Cas1: X suit la loi normale $N(\mu; \sigma)$ et σ connu

$$I = \left[m - \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}; m + \bar{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$$

cas2

X suit la loi normale $N(\mu; \sigma)$ et σ inconnu, on l'estime par l'estimation

ponctuelle
$$S = \sqrt{\frac{n}{n-1}}\tilde{S}$$

Nous distinguerons deux situations:

Pour $n \geq 30$, on \bar{Z}_{α} cherche dans la table Normale :

$$I = \left[m - \overline{Z}_{\alpha} \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}; m + \overline{Z}_{\alpha} \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$$

Pour n < 30 , on \overline{t}_{α} cherche dans la table de Student :

$$I = \left[m - \overline{t}_{\alpha} \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}; m + \overline{t}_{\alpha} \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$$

Cas3

X suit la loi quelconque : il faut que : $n \ge 30$

Pour σ connu, on cherche $ar{Z}_{lpha}$ dans la table Normale :

$$I = \left[m - \overline{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}; m + \overline{Z}_{\alpha} \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$$

Pour σ inconnu, on cherche Z_{α} dans la table Normale:

$$I = \left[m - \overline{Z}_{\alpha} \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}; m + \overline{Z}_{\alpha} \frac{S}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}} \right]$$

Attention!!

Parmi les cinq intervalles de confiances, la lecture est faite dans la table de <u>Student</u> (table 3) dans un seul cas , il s'agit du cas n < 30 et σ inconnu avec X suit la loi normale $N(\mu; \sigma)$

Exemple

Sur 20 patients a été mesuré le taux de fer sérique (distribution Normale) exprimé en $\mu g/100ml$

```
83.0; 98.0; 183.3; 119.6; 78.5; 162.6; 155.7; 147.3; 100.1; 139.2; 172.1; 102.0; 162.8; 113.8; 157.4; 128.5; 136.2; 129.3; 131.6; 157.3.
```

- 1) Les estimations ponctuelles non biaisées de la moyenne et la variance du taux de fer sérique à partir de cet échantillon 2) L'estimation de la moyenne au risque de $\alpha=0.05$ par intervalle
- de confiance

Solution

1) Les estimations ponctuelles biaisées de la moyenne et la variance du taux de fer sérique à partir de cet échantillon respectivement sont :

```
moyenne = 132.92 \ \mu g/100ml
variance corrigée = S^2 = \frac{n}{n-1} \tilde{S}^2 = 900 \ (\mu g/100ml)^2
```

Solution

Données échantillon

Données population

$$n = 20 < 30$$

Popolation infinie σ écart-type de la population σ inconnu, on l'estime par S

m = 132,92 moyenne de l'échantillon

$$S = \sqrt{\frac{\sum_{i=1}^{20} (x_i - m)^2}{n - 1}} \quad = 30$$

Solution

Pour n < 30, la distribution suit la loi normale (condition satisfaite par énoncé), alors :

on \overline{t}_{lpha} cherche dans la table de Student :

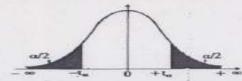
$$I = \left[m - \bar{t}_{\alpha} \frac{S}{\sqrt{n}}; m + \bar{t}_{\alpha} \frac{S}{\sqrt{n}} \right]$$

En utilisant la table 3 de Student, on trouve :

$$\alpha = 0.05$$
 $ddl = n - 1 = 19$
 $\bar{t}_{\alpha} = 2.093$

On obtient $\mu \in [118.88; 146.96]$.

Tabla 6
Distribución t de Student



2 12	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.001
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.929
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.727	0.920	1.156	1.476	2.015	2.573	3.365	4.032	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.783
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.223
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2-602	2.947	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
18	0.688	0.862	1.067	1.330	1.734	2.10	2.552	2.878	3.922
19	0 600	0.961	1 066	1 320	1 729	2.093	2.539	2.861	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.815
22	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.76
24	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
26	0.684	0.856	1.058	1.315	1.706	2-056	2.479	2.779	3.70
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646
35	0.682	0.852	1.052	1.306	1.690	2.030	2.438	2.724	3.593
40	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.705	3.553
45	0.680	0.850	1.049	1.301	1.679	2.014	2.412	2.690	3.523
50	0.679	0.849	1.047	1.299	1.676	2.009	2.403	2.678	3.491
60	0.679	0.848	1.046	1.296	1.671	2.000	2.390	2.660	3.463
80	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.417
100	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.39
000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291

Estimation par intervalle de confiance de la proportion

Un intervalle de confiance pour la proportion ne se calcule que pour les grands échantillons $n \ge 30$.

L'estimation par intervalle de confiance I consiste à construire un intervalle à l'intérieur du quel le paramètre se trouve avec une probabilité donnée.

$$P \in I = \left[\tilde{P} - \bar{Z}_{\alpha} \sqrt{\frac{\tilde{P}(1-\tilde{P})}{n}}; \tilde{P} + \bar{Z}_{\alpha} \sqrt{\frac{\tilde{P}(1-\tilde{P})}{n}} \right]$$

Tels que

$$\checkmark n\tilde{P} > 5 n(1-\tilde{P}) > 5.$$

$$\checkmark P = \tilde{P} \pm \bar{Z}_{\alpha} \sqrt{\frac{\tilde{P}(1-\tilde{P})}{n}} = \tilde{P} \pm erreur$$

- $\checkmark \tilde{P}$ le centre de l'intervalle de confiance.
- ✓ l'erreur =demi- longueur de l'intervalle

$$= \bar{Z}_{\alpha} \sqrt{\frac{\tilde{P}(1-\tilde{P})}{n}}.$$

$$\checkmark P_r(P \in I) = 1 - \alpha$$