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CHAPTER 5 

OPTIMIZATION ALGORITHMS 

2 



Mini-batch gradient descent 
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• Training NN with a large data is slow. So to find an optimization algorithm 

that runs faster is a good idea. 

• Suppose we have 𝑚 =  5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 . To train this data it will take a huge 

processing time for one step. 

– because 5 million won't fit in the memory at once we need other processing to make such 

a thing. 

• You can make a faster algorithm to make gradient descent process some of 

your items even before you finish the 5 million items. 

• In Batch gradient descent we run the gradient descent on the whole dataset. 

• While in Mini-Batch gradient descent we run the gradient descent on the 

mini datasets. 



Mini-batch gradient descent 
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 Suppose we have split m to mini batches of size 1000. 

𝑋 = 𝑥(1)𝑥(2)𝑥(3)  ⋯ 𝑥 1000 |𝑥 1001  ⋯ 𝑥 2000 |⋯ |⋯𝑥 𝑚  

(𝑛𝑥, 𝑚) 𝑋 1  (𝑛𝑥, 1000) 𝑋 2  (𝑛𝑥, 1000)  𝑋 5000  (𝑛𝑥, 1000) 

𝑌 = 𝑦(1)𝑦(2)𝑦(3)  ⋯𝑦 1000 |𝑦 1001  ⋯ 𝑦 2000 |⋯ |⋯𝑦 𝑚  

(1,𝑚) 𝑌 1  (1,1000) 𝑌 2  (1,1000)  𝑌 5000  (1,1000) 

If 𝑚 =  5 000 000: 
5000 mini-batches of 1000 each 

mini-batch t : 𝑋 𝑡 , 𝑌 𝑡  

 We similarly split 𝑋 & 𝑌 : 



Mini-batch gradient descent 
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 Mini-Batch algorithm pseudo code: 
Repeat 

    for t = 1,…,5000    # this is called an epoch 

      forward prop on 𝑋 𝑡  

                               𝑍,1- = 𝑊 1 𝑋 + 𝑏,1- 

                               𝐴,1- = 𝑔,1- 𝑍,1-  

                               ⋮ 

                               𝐴,𝑙- = 𝑔,𝑙- 𝑍,𝑙-  

      compute cost 𝐽*𝑡+  =
1

1000
 ℒ 𝑦 𝑖 , 𝑦 𝑖1000

𝑖=1 +
𝜆

2.1000
𝑤,𝑙-

2

2
 

      backward propagation to compute gradients 

      𝑤,𝑙- = 𝑤,𝑙- − 𝛼𝑑𝑤,𝑙-, 𝑏,𝑙- = 𝑏,𝑙- − 𝛼𝑑𝑏,𝑙- 

 The code inside an epoch should be vectorized. 

 Mini-batch gradient descent works much faster in the large datasets. 



Understanding mini-batch gradient descent 
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 In mini-batch algorithm, the cost won't go down with each step as it does in 

batch algorithm. 

 It could contain some ups and downs but generally it has to go down (unlike 

the batch gradient descent where cost function descreases on each iteration).. 

𝑱 
𝑱*𝒕+ 



Choosing your mini-batch size 
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 If mini-batch size =  𝒎 ⟹  Batch gradient descent 

 If mini-batch size =  𝟏 ⟹ Stochastic gradient descent (SGD) 

 If  𝟏 ≤ mini-batch size ≤ 𝒎 ⟹ Mini-batch gradient descent 

Stochastic gradient 
descent (SGD) 

Mini-batch 
gradient descent 

Batch gradient 
descent 

 too noisy 
regarding cost 
minimization 

 won't ever 
converge 

 lose speedup 
from 
vectorization 

 faster learning 
 make progress 

without waiting 
to process the 
entire training 
set 

 too long per 
iteration 
(epoch) 



Guidelines for choosing mini-batch size 
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I. If small training set (< 2000 examples): use batch gradient descent. 

II. It has to be a power of 2 (because of the way computer memory is layed 

out and accessed, sometimes your code runs faster if your mini-batch size 

is a power of 2): 64, 128, 256, 512, 1024, ... 

III. Make sure that mini-batch fits in CPU/GPU memory. 

Note: Mini-batch size is a hyperparameter. 



Exponentially weighted averages 
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𝜃1 = 40°𝐹 

𝜃2 = 49°𝐹 

𝜃3 = 45°𝐹 

⋮ 
𝜃180 = 60°𝐹 

𝜃181 = 56°𝐹 

⋮ 

Now lets compute the Exponentially weighted averages: 

𝑉0 = 0 

𝑉1 = 0.9𝑉0 + 0.1𝜃1 

𝑉2 = 0.9𝑉1 + 0.1𝜃2 

𝑉3 = 0.9𝑉2 + 0.1𝜃3 

⋮ 
𝑉𝑡 = 0.9𝑉𝑡−1 + 0.1𝜃𝑡 



Exponentially weighted averages 
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 General equation: 

𝑉𝑡 = 𝛽𝑉𝑡−1 + 1 − 𝛽 𝜃𝑡 

 

 If we plot this it will represent averages over 

≈
1

1−𝛽
 entries: 

 𝛽 =  0.9 will average last 10 entries 

 𝛽 =  0.98 will average last 50 entries 

 𝛽 =  0.5 will average last 2 entries 

 Best beta average for our case is between 0.9 

and 0.98 



Understanding exponentially weighted averages 
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 Intuition: exponentially weighted averages can give different weights to recent 
data points (theta) based on value of beta. If beta is high (around 0.9), it smoothens 
out the averages of skewed data points (oscillations w.r.t. Gradient descent 
terminology). So this reduces oscillations in gradient descent and hence makes 
faster and smoother path towards minima. 

𝑉𝑡 = 𝛽𝑉𝑡−1 + 1 − 𝛽 𝜃𝑡 



Bias correction in exponentially weighted averages 
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 The bias correction helps make the exponentially weighted averages more accurate. 

 Because 𝑉0 =  0, the bias of the weighted averages is shifted and the accuracy 

suffers at the start. 

 To solve the bias issue we have to use this equation: 

𝑉𝑡 =
𝛽

1 − 𝛽𝑡 𝑉𝑡−1 +
1 − 𝛽

1 − 𝛽𝑡 𝜃𝑡 

 As 𝑡 becomes larger the 1 − 𝛽𝑡  becomes close to 1 



Bias correction 
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𝑉𝑡 = 𝛽𝑉𝑡−1 + 1 − 𝛽 𝜃𝑡 

𝑉0 = 0 

𝑉1 = 0.98𝑉0 + 0.02𝜃1 = 0.02𝜃1 

𝑉2 = 0.98𝑉1 + 0.02𝜃2 

𝑉2 = 0.98 ∗ 0.02𝜃1 + 0.02𝜃2 

𝑉2 = 0.0196𝜃1 + 0.02𝜃2 

𝑉𝑡

1 − 𝛽𝑡 

𝑡 = 2:     1 − 𝛽𝑡 = 1 − 0.982 = 0.0396 
𝑉2

0.0396
=

0.0196𝜃1 + 0.02𝜃2

0.0396
 

𝑉2

0.0396
= 0.4949𝜃1 + 0.5051𝜃2 

𝛽 = 0.98 



Gradient descent with momentum 
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 The momentum algorithm almost always works faster than standard gradient descent. 

 The simple idea is to calculate the exponentially weighted averages for your gradients 
and then update your weights with the new values. 

 
𝑣𝑑𝑊 =  0, 𝑣𝑑𝑏 =  0 
on iteration t: 

  # can be mini-batch or batch gradient descent 

  compute 𝑑𝑤, 𝑑𝑏 on current mini-batch 
     𝑣𝑑𝑊 =  𝛽 ∗  𝑣𝑑𝑊 + (1 −  𝛽)  ∗  𝑑𝑊 

     𝑣𝑑𝑏 =  𝛽 ∗  𝑣𝑑𝑏 + (1 −  𝛽)  ∗  𝑑𝑏 
     𝑊 =  𝑊 −  𝛼 ∗  𝑣𝑑𝑊 

     𝑏 =  𝑏 −  𝛼 ∗  𝑣𝑑𝑏 

𝛼 ∶  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  



Implementation details 
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 Momentum helps the cost function to go to the minimum point in a more 

fast and consistent way. 

 beta is another hyperparameter. 𝛽 =  0.9 is very common and works very 

well in most cases. 

 In practice people don't bother implementing bias correction. 



RMSprop (Root Mean Squered) 
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 Stands for Root Mean Square prop. 

 This algorithm speeds up the gradient descent. 

 Pseudo code: 

𝑠𝑑𝑊 =  0, 𝑠𝑑𝑏 =  0 
on iteration t: 

  # can be mini-batch or batch gradient descent 

  compute 𝑑𝑤, 𝑑𝑏 on current mini-batch 
     𝑠𝑑𝑊 =  (𝛽 ∗  𝑠𝑑𝑊) + (1 −  𝛽)  ∗  𝑑𝑊^2  #squaring is element-wise 
     𝑠𝑑𝑏 =  (𝛽 ∗  𝑠𝑑𝑏)  + (1 −  𝛽)  ∗  𝑑𝑏^2    #squaring is element-wise 
     𝑊 =  𝑊 −  𝛼 ∗  𝑑𝑊 / 𝑠𝑞𝑟𝑡(𝑠𝑑𝑊) 
     𝑏 =  𝐵 −  𝛼 ∗  𝑑𝑏 / 𝑠𝑞𝑟𝑡(𝑠𝑑𝑏) 

𝛼 ∶  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  



Adam optimization algorithm 

17 

𝑣𝑑𝑊 =  0, 𝑣𝑑𝑊 =  0, 𝑠𝑑𝑊 =  0, 𝑠𝑑𝑏 =  0 
on iteration t: 

# can be mini-batch or batch gradient descent 

compute 𝑑𝑤, 𝑑𝑏 on current mini-batch 
𝑣𝑑𝑊 =  𝛽1 ∗ 𝑣𝑑𝑊 + 1 − 𝛽1  ∗  𝑑𝑊   # momentum 

𝑣𝑑𝑏 = 𝛽1 ∗ 𝑣𝑑𝑏 + 1 − 𝛽1  ∗  𝑑𝑏    # momentum 
𝑠𝑑𝑊 =  𝛽2 ∗ 𝑠𝑑𝑊 + 1 − 𝛽2  ∗  𝑑𝑊2  # RMSprop 

𝑠𝑑𝑏 =  𝛽2 ∗ 𝑠𝑑𝑏 + 1 − 𝛽2  ∗  𝑑𝑏2    # RMSprop 

𝑣𝑑𝑊 =  𝑣𝑑𝑊 1 − 𝛽1
𝑡        # fixing bias 

𝑣𝑑𝑏 =  𝑣𝑑𝑏 1 − 𝛽1
𝑡         # fixing bias 

𝑠𝑑𝑊 =  𝑠𝑑𝑊 1 − 𝛽2
𝑡        # fixing bias 

𝑠𝑑𝑏 =  𝑠𝑑𝑏 1 − 𝛽2
𝑡         # fixing bias 

𝑊 =  𝑊 − 𝛼 ∗ 𝑣𝑑𝑊 𝑠𝑑𝑊 +  𝜀  

𝑏 = 𝑏 − 𝛼 ∗ 𝑣𝑑𝑏 𝑠𝑑𝑏 +  𝜀  

 Stands for Adaptive Moment Estimation. 

 Adam optimization and RMSprop are among the optimization algorithms that worked 

very well with a lot of NN architectures. 

 Adam optimization simply puts RMSprop and momentum together! 

𝛼 ∶  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  



Hyperparameters for Adam 

18 

 Learning rate (𝛼): needed to be tuned. 

 Parameter of the momentum (𝛽1): 0.9 is recommended by default. 

 Parameter of the RMSprop (𝛽2) : 0.999 is recommended by default. 

 𝜀: 10−8 is recommended by default. 



Learning rate decay 
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 Slowly reduce learning rate. 

 As mentioned before mini-batch gradient descent won't reach the optimum point 

(converge). But by making the learning rate decay with iterations it will be much closer 

to it because the steps (and possible oscillations) near the optimum are smaller. 

 One technique equations is: 

𝛼 =  
1

1 +  𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 ∗  𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚
 ∗  𝛼0 

 epoch_num is over all data (not a single mini-batch). 



Other learning rate decay methods 
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 Other learning rate decay methods (continuous): 

𝛼 =  0.95𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚 ∗ 𝛼0 

𝛼 =   
𝑘

𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚
∗ 𝛼0 or 𝛼 =   

𝑘

𝑡
∗ 𝛼0 

 Some people perform learning rate decay discretely - repeatedly decrease after some number 

of epochs. 

 Some people are making changes to the learning rate manually. 

 Decay method or 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 is another hyperparameter . 

 Learning rate decay has less priority. 



The problem of local optima 
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 The normal local optima is not likely to appear in a deep neural network because data is 

usually high dimensional. For point to be a local optima it has to be a local optima for each 

of the dimensions which is highly unlikely. 

 It's unlikely to get stuck in a bad local optima in high dimensions, it is much more likely to 

get to the saddle point rather to the local optima, which is not a problem. 

saddle point  𝐽 

𝑤1 
𝑤2 



Problem of plateaus 
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 Plateaus can make learning slow: 

 Plateau is a region where the derivative is close to zero for a long time. 

 This is where algorithms like momentum, RMSprop or Adam can help. 
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