
1. Prove that a subset H of a group G is a subgroup if it is nonempty, finite and closed
under the group operation.

2. Give an example of a group G and an infinite subset H of G that is closed under the
group operation but is not a subgroup of G.

3. Let H and K be subgroups of a group G. Prove that H ∪ K is a subgroup of G if
and only if H is a subgroup of K or K is a subgroup of H.

4. Prove that if H and K are subgroups of a group G then so is their intersection H∩K.

5. Prove that G cannot have a subgroup H with |H| = n− 1, where n = |G| > 2.

6. Show that every subgroup of Zn is cyclic.

7. If φ : G → H is an isomorphism between groups G and H, show that φ(0G) = 0H

where 0G is the additive identity of G and 0H is the additive identity of H

8. Show that all finite cyclic groups are isomorphic to Zn.

9. Show that all finite cyclic groups are abelian.

10. Let G be a group. Let x ∈ G and m,n ∈ Z. Prove that if xn = 1 and xm = 1, then
xd = 1 where d = gcd(m,n). Using this result, prove that if xm = 1 for some m ∈ Z,
then the order of x divides m.



1. Given, H is a subset of G such that it is non-empty, finite and closed under group
operation ?.

Since H is closed under group operation ?, ? is a valid binary operation over set H.

Associative property follows from the fact that G is a group.

Now, subset H is non-empty.

Hence ∃ at least one element in H, call it ‘a’.

Now, consider a set B, B={a, a ? a, a ? a ? a, . . . }
Because H is closed under ?, a ? a ∈ H, a ? a ? a ∈ H and so on.

We see that B ⊆ H ⇒ |B| ≤ |H|
Since, H is finite, the cardinality of B is finite.

That means, a, a?a, a?a?a, . . . cannot all be distinct. So there exist positive integers
i and j such that

a ? a ? . . . ? a︸ ︷︷ ︸
i times

= a ? a ? . . . ? a︸ ︷︷ ︸
j times

⇒ a ? a ? . . . ? a︸ ︷︷ ︸
(i− j) times

= e

where e is the identity of the group G. The second equality is obtained by multiplying
both sides by a−1 ? a−1 ? · · · ? a−1︸ ︷︷ ︸

j times

However, a ? a ? . . . ? a︸ ︷︷ ︸
k times

∈ H where k = i− j > 0 because H is closed under ?.

This implies that e ∈ H. Since e is the identity of the group G, a ? e = e ? a = a for
all a ∈ H.

Now, only thing left to prove is the existence of inverse. Consider any element a in
subset H. We need to prove that there exists b ∈ H such that a ? b = b ? a = e

If a = e, then a is the inverse of itself. Otherwise, by the argument presented earlier,
there exists a positive integer k such that a ? a ? ... ? a︸ ︷︷ ︸

k times

= e. Let b = a ? a ? ... ? a︸ ︷︷ ︸
k − 1 times

.

Then a ? b = b ? a = e. Since b ∈ H, the inverse of every element a ∈ H exists.

Hence, H is a subgroup of G.



2. Consider the set of integers Z={...,-2,-1,0,1,2,...} under the operation real addition.
It is easy to show that Z is a group, since addition is associative, closed over integers,
0 is the identity and for a, −a is the inverse.

Let Z+ = {1, 2, 3, ...}. Z+ is non-empty, infinite and closed under addition. However,
Z+ is not a subgroup of Z since there is no identity element.

3. Let H and K be subgroups of a group G.

One direction: Given H is a subgroup of K or K is a subgroup of H, we want to
prove that H ∪K is a subgroup of G.

H ∪K = H if K subgroup of H or H ∪K = K if H subgroup of K. Since H and K
are subgroups of G, H ∪K is a subgroup of G.

Other direction: Given H,K,H ∪K are subgroups of G, we want to prove that H
is a subgroup of K or K is a subgroup of H.

If H is a subgroup of K, we have nothing to prove. Suppose H is not a subgroup of
K. Since H is a subgroup of G, this is possible only if H is not a subset of K. So there
exists an element a ∈ H such that a /∈ K. Now for any b ∈ K, a ? b ∈ H ∪K. Now
a ? b cannot be in K because if it does belong to K then a ? b ? b−1 = a belongs to K,
which is a contradiction. So a ? b ∈ H for all b ∈ K. This implies that a−1 ? a ? b = b
belongs to H. Thus every element of K belongs to H and K is a subgroup of H.

4. Given H and K are subgroups of G. Consider H ∩K. We will use a theorem proved
in class that subset H is subgroup of G if H 6= φ and x, y ∈ H ⇒ xy−1 ∈ H.

H ∩K 6= φ because the identity is in both subgroups.

Also, for any x, y ∈ H ∩K, x, y ∈ H and x, y ∈ K
⇒ xy−1 ∈ H and xy−1 ∈ K
⇒ xy−1 ∈ H ∩K
Hence, H ∩K is also a subgroup.

5. H is a subgroup of G,

⇒ O(H) | O(G)

⇒ O(H) | n
(n− 1) does not divide n for n > 2.

⇒ O(H) 6= n− 1

Hence, G cannot have subgroup H such that |H| = n− 1.

6. Zn = {0, 1, 2, ..., n− 1} with operation addition modulo n.

Let P be the subgroup of Zn. P 6= φ, since it is a group. If P = {0}, the P is
cyclic. Suppose P 6= {0}. By the well-ordering property of the integers, there exists
a smallest non-zero element in this subgroup P . Let it be s. We claim that P is cyclic
with generator s, i.e. every element of P is a multiple of s modulo n. Suppose this is
not true. Then there exists an integer m ∈ P such that m is not divisible by s. Then
we can write m = qs+ r where 0 < r < s and q is a positive integer representing the
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quotient. Since s ∈ P , qs mod n = s+ · · ·+ s︸ ︷︷ ︸
q times

modn ∈ P . Since m and qs mod n

belong to P , r = m − qs mod n ∈ P where −qs is the additive inverse of qs mod n
in P . This is a contradiction since 0 < r < s and s was chosen to be the smallest
non-zero element of P .

Thus, every subgroup of Zn is cyclic.

7. φ : G→ H is an isomorphism between G and H.

⇒ φ(x ∗g y) = φ(x) ∗H φ(y), x, y ∈ G
⇒ φ(x ∗g Og) = φ(x) ∗H φ(Og)

⇒ φ(x) = φ(x) ∗H φ(Og)

Φ : G→ H ⇒ Let φ(x) = h ∈ H
h = h ∗H φ(Og)

Similarly, h = φ(Og) ∗H h (similar to above)

⇒ OH = φ(Og)

8. All finite cyclic groups are isomorphic to Zn.

Proof: Let G be a finite cyclic group. We need a one-to-one and onto function
h : G→ Zn such that h(x⊕ y) = h(x) ∗ h(y), ∀x, y ∈ G.
Let g be the generator element of G and i · g denote g ⊕ g ⊕ ...⊕ g︸ ︷︷ ︸

i times

for every integer

i > 0. Since G is cyclic, every element in G can be written as i · g for some positive
integer i. Since G is finite there exists a smallest positive integer n such that n ·g = 0.

Define h : G→ Zn as h(i · g) = i. It can be shown that h is one-to-one and onto.

For any x, y ∈ G, x = i · g and y = j · g for some positive integers i and j less than n.
Also x⊕ y = i · g + j · g = (i+ j mod n) · g. This proves that h(x⊕ y) = h(x) ∗ h(y)
since both sides are equal to (i+ j) mod n.

9. All finite cyclic groups are isomorphic to Zn and Zn is abelian. So all finite cyclic
groups have to be abelian. Suppose this is not true. Then there exists a finite cyclic
group G with elements x and y such that x ? y 6= y ? x. Since G is isomorphic to Zn,
there is a one-to-one and onto function h : G→ Zn such that h(x ? y) = h(x) ? h(y).
Since Zn is abelian, h(x) ? h(y) = h(y) ? h(x). This implies h(x ? y) = h(y ? x). Since
h is one-to-one x ? y = y ? x. This contradicts our assumption that G is not abelian.

10. x ∈ G ,m, n ∈ Z. To prove that if xn = 1 and xm = 1, then xd = 1 where
d = gcd(m,n). Using Bezout’s theorem, d = gcd(m,n)= am + bn for some integers
a, b ∈ Z. Then

xd = xam+bn = (xm)a(xn)b = 1

Let n be the order of x. This means xn = 1 and xi 6= 1for i = 1, 2, ..., n − 1. Given
that xm = 1, xgcd(m,n) = 1. Then gcd(m,n) ≥ n since n is the smallest positive
integer such that xn = 1. However,d = gcd(m,n) ≤ n, since a divisor of a positive
integer is less than or equal to it. Thus gcd(m,n) = n and n divides m.
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