10.

. Prove that a subset H of a group G is a subgroup if it is nonempty, finite and closed

under the group operation.

Give an example of a group G and an infinite subset H of GG that is closed under the
group operation but is not a subgroup of G.

Let H and K be subgroups of a group GG. Prove that H U K is a subgroup of G if
and only if H is a subgroup of K or K is a subgroup of H.

Prove that if H and K are subgroups of a group G then so is their intersection H N K.
Prove that G cannot have a subgroup H with |H| =n — 1, where n = |G| > 2.
Show that every subgroup of Z, is cyclic.

If ¢ : G — H is an isomorphism between groups G and H, show that ¢(0g) = Oy
where O is the additive identity of G and Oy is the additive identity of H

Show that all finite cyclic groups are isomorphic to Z,.
Show that all finite cyclic groups are abelian.

Let G be a group. Let x € G and m,n € Z. Prove that if 2" = 1 and 2™ = 1, then
2% = 1 where d = ged(m, n). Using this result, prove that if 2™ = 1 for some m € Z,
then the order of x divides m.



1. Given, H is a subset of G such that it is non-empty, finite and closed under group
operation x.

Since H is closed under group operation %, x is a valid binary operation over set H.
Associative property follows from the fact that G is a group.

Now, subset H is non-empty.

Hence 3 at least one element in H, call it ‘a’.

Now, consider a set B, B={a,axa,axax*a,...}

Because H is closed under x, axa € H,axa*a € H and so on.

We see that BC H = |B| < |H|

Since, H is finite, the cardinality of B is finite.

That means, a,axa,axax*a,...cannot all be distinct. So there exist positive integers
7 and j such that

axax...xaq = a*ka*x...%xQ
—— N———
¢ times 7 times
= axax...%kaq = €
N—————
(i — j) times

where e is the identity of the group GG. The second equality is obtained by multiplying
both sides by g ' a ' x---xa?

J/
-~

7 times

However, axa*...xa € H where k =1 — j > 0 because H is closed under *.
—_—
k times

This implies that e € H. Since e is the identity of the group G, axe =exa = a for
all a € H.

Now, only thing left to prove is the existence of inverse. Consider any element a in
subset H. We need to prove that there exists b € H such that axb=bxa =¢

If a = e, then a is the inverse of itself. Otherwise, by the argument presented earlier,
there exists a positive integer k such that gxax...xaq =e. Let b = gxax*...xa.
— ——

k times k — 1 times
Then axb=0b%a =-e. Since b € H, the inverse of every element a € H exists.

Hence, H is a subgroup of G.



. Consider the set of integers Z={...,-2,-1,0,1,2,...} under the operation real addition.
It is easy to show that Z is a group, since addition is associative, closed over integers,
0 is the identity and for a, —a is the inverse.

Let ZT ={1,2,3,...}. Z* is non-empty, infinite and closed under addition. However,
77" is not a subgroup of Z since there is no identity element.
. Let H and K be subgroups of a group G.

One direction: Given H is a subgroup of K or K is a subgroup of H, we want to
prove that H U K is a subgroup of G.

HUK = H if K subgroup of H or HU K = K if H subgroup of K. Since H and K
are subgroups of G, H U K is a subgroup of G.

Other direction: Given H, K, H U K are subgroups of GG, we want to prove that H
is a subgroup of K or K is a subgroup of H.

If H is a subgroup of K, we have nothing to prove. Suppose H is not a subgroup of
K. Since H is a subgroup of GG, this is possible only if H is not a subset of K. So there
exists an element a € H such that a ¢ K. Now for any b € K, axb € HU K. Now
a*b cannot be in K because if it does belong to K then axbxb~! = a belongs to K,
which is a contradiction. So axb € H for all b € K. This implies that a ' xaxb =10
belongs to H. Thus every element of K belongs to H and K is a subgroup of H.

. Given H and K are subgroups of G. Consider H N K. We will use a theorem proved
in class that subset H is subgroup of G if H # ¢ and 2,y € H = xy~' € H.

H N K # ¢ because the identity is in both subgroups.

Also, for any x,y € HNK,z,y € H and z,y € K

=ay '€ Hand oy ' € K

=azy e HNK

Hence, H N K is also a subgroup.

. H is a subgroup of G,

= O(H) | O(G)

= O(H) | n

(n — 1) does not divide n for n > 2.

= O(H)#n—-1

Hence, G cannot have subgroup H such that |H| =n — 1.

. Z, =40,1,2,...,n — 1} with operation addition modulo n.

Let P be the subgroup of Z,. P # ¢, since it is a group. If P = {0}, the P is
cyclic. Suppose P # {0}. By the well-ordering property of the integers, there exists
a smallest non-zero element in this subgroup P. Let it be s. We claim that P is cyclic
with generator s, i.e. every element of P is a multiple of s modulo n. Suppose this is
not true. Then there exists an integer m € P such that m is not divisible by s. Then
we can write m = ¢s +r where 0 < r < s and ¢ is a positive integer representing the
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quotient. Since s € P, gsmodn = s+ .-+ smodn € P. Since m and ¢gs mod n
—_——

q times
belong to P, r = m — gs mod n € P where —gs is the additive inverse of ¢gs mod n

in P. This is a contradiction since 0 < r < s and s was chosen to be the smallest
non-zero element of P.

Thus, every subgroup of Z,, is cyclic.

¢ : G — H is an isomorphism between G and H.
= 0w *gy) = o(x) *m ¢(y), z,y€C

= ¢z %, Oy) = ¢(z) x5 ¢(Oy)

= () = d(z) *m #(Oy)

®:G— H= Let p(x)=heH

h=hxy $(0y)

Similarly, h = ¢(O,) *y h (similar to above)

= Oy = ¢(0,)

. All finite cyclic groups are isomorphic to Z,.

Proof: Let G be a finite cyclic group. We need a one-to-one and onto function

h:G — Z, such that h(z @ y) = h(z) * h(y),Vz,y € G.

Let g be the generator element of G and ¢ - g denote g b g & ... @ g for every integer
—_—

i times
1 > 0. Since G is cyclic, every element in G' can be written as ¢ - g for some positive
integer ¢. Since G is finite there exists a smallest positive integer n such that n-g = 0.

Define h : G — Z,, as h(i- g) = 4. It can be shown that h is one-to-one and onto.

For any x,y € G, x =1-g and y = j - g for some positive integers ¢ and j less than n.
Alsox®dy=i-g+j-g=(i+jmodn)-g. This proves that h(x @ y) = h(z) * h(y)
since both sides are equal to (i + 7) mod n.

. All finite cyclic groups are isomorphic to Z, and Z, is abelian. So all finite cyclic

groups have to be abelian. Suppose this is not true. Then there exists a finite cyclic
group G with elements x and y such that x xy # y*x. Since G is isomorphic to Z,,
there is a one-to-one and onto function h : G — Z,, such that h(zx xy) = h(x) x h(y).
Since Z,, is abelian, h(x) x h(y) = h(y) = h(x). This implies h(z xy) = h(y x ). Since
h is one-to-one x x y = y = x. This contradicts our assumption that G is not abelian.

r € G ,m,n € Z. To prove that if 2" = 1 and 2™ = 1, then 2¢ = 1 where
d = ged(m,n). Using Bezout’s theorem, d = ged(m,n)= am + bn for some integers
a,b € Z. Then

Qfd — xaerbn — (xm)a(xn)b -1

Let n be the order of z. This means 2™ = 1 and 2% # 1for i = 1,2,...,n — 1. Given
that 2™ = 1, 28°d™™) = 1. Then gcd(m,n) > n since n is the smallest positive
integer such that ™ = 1. However,d = ged(m,n) < n, since a divisor of a positive
integer is less than or equal to it. Thus ged(m,n) = n and n divides m.
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