

Contents [1.1 Series with real terms](#page-1-0) . 2 **[1.1.1 The convergence of a numerical series](#page-1-1)** 2 **[1.1.2 Operations on numerical series](#page-2-0)** 3 **[1.2 Series with positive term](#page-3-0)** 4 **[1.2.1 Comparison theorems](#page-3-1)** 4 **[1.2.2 Usual rules of convergence](#page-4-0)** 5

1.1 Series with real terms

Definition 1.1.1. *Let* $(u_n)_{n\in\mathbb{N}}$ *be a sequence with real numbers. The infinite sum:*

$$
u_0+u_1+\cdots+u_n+\cdots=\sum_{n\geq 0}u_n
$$

is called a numerical series.

where $u_0, u_1, \dots, u_n, \dots$ the terms of the series and u_n is called general term of the series.

Considering now the following partial sums

$$
\begin{cases}\nS_0 = u_0 \\
S_1 = u_0 + u_1 \\
\vdots \\
S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k\n\end{cases}
$$

 S_n is called the n^{th} partial sum of the series $\sum_{i=1}^{n}$ *n*≥0 u_n and $(S_n)_n$ is called the sequence of partial sums of this series.

Example 1.1.1. *.*

 \bullet ∇ *n*≥0 aq_n , $a \neq 0 \longrightarrow$ *Geometric series of reason q*. \bullet ∇ *n*≥1 1 *n* −→ *Harmonic Series.*

1.1.1 The convergence of a numerical series

Definition 1.1.2. *The series with real terms* \sum *n*≥0 *uⁿ is said convergent if the sequence of partial sums* (*Sn*)*ⁿ converges to a limit S called the sum of the series.*

$$
S=\lim_{n\to+\infty}S_n=\sum_{n\geq 0}u_n.
$$

Example 1.1.2. *.*

Let \sum *n*≥1 *u_n* be the series with the general term $u_n = \frac{1}{n(n+1)}$, $n \ge 1$ • *The term uⁿ can be rewritten in the form*

$$
u_n = \frac{1}{n} - \frac{1}{n+1}, \ \ n \ge 1.
$$

• *The partial sum of the series*

$$
S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}
$$

• *We have* $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} 1 - \frac{1}{n+1}$ $\frac{1}{n+1}$ = 1 *therefore the series* \sum *n*≥1 *uⁿ is convergent with sum* $S = 1$.

Proposition 1.1.1. If the numerical series \sum *n*≥0 *uⁿ is convergent then its general term uⁿ tends towards zero i.e.* $\boldsymbol{\nabla}$ $\sum_{n\geq0}u_n$ *is convergent* $\implies \lim_{n\to+\infty}u_n=0.$

Corollary 1.1.1. *A su*ffi*cient condition for a series to be divergent is that its general term does not tend towards zero.*

1.1.2 Operations on numerical series

Let \sum *n*≥0 u_n and \sum *n*≥0 *vⁿ* be two numerical series, then we have the following properties \bullet If \sum *n*≥0 u_n is convergent of sum S_1 and \sum *n*≥0 v_n is convergent of sum S_2 , then \sum *n*≥0 $u_n + v_n$ is convergent of sum $S_1 + S_2$.

• If \sum *n*≥0 u_n is convergent of sum S_1 and $a \in \mathbb{R}$ then \sum *n*≥0 *auⁿ* is convergent of sum *aS*1. • If \sum *n*≥0 u_n is convergent and \sum *n*≥0 v_n is divergent then \sum *n*≥0 $u_n + v_n$ is divergent. • If the two series \sum *n*≥0 u_n and \sum *n*≥0 *vⁿ* are divergent, then we cannot conclude anything about the nature of the series \sum *n*≥0 $u_n + v_n$.

1.2 Series with positive term

Definition 1.2.1. *We call a series with positive term any series whose general term* $u_n \geq 0$ *for all* $n \geq 0$ *.*

Proposition 1.2.1. Let $\sum_{n} u_n$ be a series with positive real terms, then this series $converges$ to S if and only if $S_n \leq S$ for all $n \geq 0.$

1.2.1 Comparison theorems

Theorem 1.2.1. Let \sum *n*≥0 u_n and \sum *n*≥0 *vⁿ be two series with positive terms satisfying* $\exists n_0 \in \mathbb{N}$ *, such that for all* $n \geq n_0$, $u_n \leq v_n$ • If the series \sum *n*≥0 v_n *is convergent then the series* \sum *n*≥0 *uⁿ is convergent.* • If the series \sum *n*≥0 u_n *is divergent then the series* \sum_{α} *n*≥0 *vⁿ is divergent.*

Corollary 1.2.1. Let \sum *n*≥0 u_n and \sum *n*≥0 *vⁿ be two series with positive terms, if there exists a*, *b* > 0 *satisfying* $au_n \le v_n \le bu_n$ then \sum *n*≥0 u_n and \sum *n*≥0 *vⁿ are of the same nature.*

Theorem 1.2.2. Let \sum *n*≥0 u_n and \sum *n*≥0 *vⁿ be two series with positive terms, if there exists a real l (or l = +∞) such that* $\lim_{n \to +\infty} \frac{u_n}{v_n}$ *vn* = *l, then* • If $l = 0$ and the series $\sum_{l=1}^{n}$ *n*≥0 v_n *is convergent then the series* \sum *n*≥0 *uⁿ is convergent.* • If $l = +\infty$ and the series $\sum_{l=1}^{\infty}$ *n*≥0 v_n *is divergent then the series* \sum_{α} *n*≥0 *uⁿ is divergent.* • *If* $l \neq 0$ and $l \neq +\infty$ then the two series $\sum_{l=1}^{n}$ *n*≥0 u_n and \sum *n*≥0 *vⁿ are of the same nature.*

1.2.2 Usual rules of convergence

Definition 1.2.2. *We call a Riemann series any numerical series whose general term* $u_n = \frac{1}{n}$ $\frac{1}{n^{\alpha}}$.

Proposition 1.2.2. *The Riemann series is convergent for all* $\alpha > 1$ *.*

Proposition 1.2.3. *(Riemann's rule)*

The Riemann rule amounts to comparing a series with positive terms to a Riemann series.

Let
$$
\sum_{n\geq 1} u_n
$$
 be a series with positive real terms and let $\alpha \in \mathbb{R}$, suppose that there exists
a positive real l (or $l = +\infty$) such that $\lim_{n \to +\infty} n^{\alpha} u_n = l$
\n• If $l = 0$ and $\alpha > 1$ then the series $\sum_{n\geq 1} u_n$ is convergent.
\n• If $l = +\infty$ and $\alpha \leq 1$ then the series $\sum_{n\geq 1} u_n$ is divergent.
\n• If $l \neq 0$ and $l \neq +\infty$ then the two series $\sum_{n\geq 1} u_n$ and $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ are of the same nature.

Proposition 1.2.4. *(D'Alembert's rule)* Let \sum *n*≥1 *uⁿ be a series with strictly positive real terms, suppose that there exists a positive real l (or l* = +∞) such that $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n}$ *un* = *l* • If $l < 1$ then the series $\sum u_n$ is convergent. *n*≥1 • If $l > 1$ then the series $\sum_{l=1}^{k}$ *n*≥1 *uⁿ is divergent.*

Proposition 1.2.5. *(Cauchy rule)*

Let
$$
\sum_{n\geq 1} u_n
$$
 be a series with strictly positive real terms, suppose that there exists a positive real l (or $l = +\infty$) such that $\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l$ \bullet If $l < 1$ then the series $\sum_{n\geq 1} u_n$ is convergent. \bullet If $l > 1$ then the series $\sum_{n\geq 1} u_n$ is divergent.