

1.1 Series with real terms 2 1.1.1 The convergence of a numerical series 2 1.1.2 Operations on numerical series 3 1.2 Series with positive term 4 1.2.1 Comparison theorems 4 1.2.2 Usual rules of convergence 5

1.1 Series with real terms

Definition 1.1.1. Let $(u_n)_{n \in \mathbb{N}}$ be a sequence with real numbers. The infinite sum:

$$u_0 + u_1 + \dots + u_n + \dots = \sum_{n \ge 0} u_n$$

is called a numerical series.

where $u_0, u_1, \dots, u_n, \dots$ the terms of the series and u_n is called general term of the series.

Considering now the following partial sums

$$\begin{cases} S_0 = u_0 \\ S_1 = u_0 + u_1 \\ \vdots \\ S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k \end{cases}$$

 S_n is called the n^{th} partial sum of the series $\sum_{n\geq 0} u_n$ and $(S_n)_n$ is called the sequence of partial sums of this series.

Example 1.1.1.

• $\sum_{n\geq 0} aq_n$, $a \neq 0 \longrightarrow$ Geometric series of reason q. • $\sum_{n\geq 1} \frac{1}{n} \longrightarrow$ Harmonic Series.

1.1.1 The convergence of a numerical series

Definition 1.1.2. The series with real terms $\sum_{n\geq 0} u_n$ is said convergent if the sequence of partial sums $(S_n)_n$ converges to a limit S called the sum of the series.

$$S = \lim_{n \to +\infty} S_n = \sum_{n \ge 0} u_n.$$

Example 1.1.2.

Let $\sum_{n\geq 1} u_n$ be the series with the general term $u_n = \frac{1}{n(n+1)}$, $n \geq 1$ • The term u_n can be rewritten in the form

$$u_n = \frac{1}{n} - \frac{1}{n+1}, \ n \ge 1.$$

• The partial sum of the series

$$S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

• We have $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} 1 - \frac{1}{n+1} = 1$ therefore the series $\sum_{n \ge 1} u_n$ is convergent with sum S = 1.

Proposition 1.1.1. If the numerical series $\sum_{n\geq 0} u_n$ is convergent then its general term u_n tends towards zero i.e. $\sum_{n\geq 0} u_n \text{ is convergent } \Longrightarrow \lim_{n\to+\infty} u_n = 0.$

Corollary 1.1.1. A sufficient condition for a series to be divergent is that its general term does not tend towards zero.

1.1.2 Operations on numerical series

Let $\sum_{n\geq 0} u_n$ and $\sum_{n\geq 0} v_n$ be two numerical series, then we have the following properties • If $\sum_{n\geq 0} u_n$ is convergent of sum S_1 and $\sum_{n\geq 0} v_n$ is convergent of sum S_2 , then $\sum_{n\geq 0} u_n + v_n$ is convergent of sum $S_1 + S_2$.

• If $\sum_{n\geq 0} u_n$ is convergent of sum S_1 and $a \in \mathbb{R}$ then $\sum_{n\geq 0} au_n$ is convergent of sum aS_1 .

If ∑_{n≥0} u_n is convergent and ∑_{n≥0} v_n is divergent then ∑_{n≥0} u_n + v_n is divergent.
If the two series ∑_{n≥0} u_n and ∑_{n≥0} v_n are divergent, then we cannot conclude anything about the nature of the series ∑_{n≥0} u_n + v_n.

1.2 Series with positive term

Definition 1.2.1. We call a series with positive term any series whose general term $u_n \ge 0$ for all $n \ge 0$.

Proposition 1.2.1. Let $\sum_{n\geq 0} u_n$ be a series with positive real terms, then this series converges to *S* if and only if $S_n \leq S$ for all $n \geq 0$.

1.2.1 Comparison theorems

Theorem 1.2.1. Let $\sum_{n\geq 0} u_n$ and $\sum_{n\geq 0} v_n$ be two series with positive terms satisfying $\exists n_0 \in \mathbb{N}$, such that for all $n \geq n_0$, $u_n \leq v_n$ • If the series $\sum_{n\geq 0} v_n$ is convergent then the series $\sum_{n\geq 0} u_n$ is convergent. • If the series $\sum_{n\geq 0} u_n$ is divergent then the series $\sum_{n\geq 0} v_n$ is divergent.

Corollary 1.2.1. Let $\sum_{n\geq 0} u_n$ and $\sum_{n\geq 0} v_n$ be two series with positive terms, if there exists a, b > 0 satisfying $au_n \leq v_n \leq bu_n$ then $\sum_{n\geq 0} u_n$ and $\sum_{n\geq 0} v_n$ are of the same nature. **Theorem 1.2.2.** Let $\sum_{n\geq 0} u_n$ and $\sum_{n\geq 0} v_n$ be two series with positive terms, if there exists a real l (or $l = +\infty$) such that $\lim_{n\to+\infty} \frac{u_n}{v_n} = l$, then • If l = 0 and the series $\sum_{n\geq 0} v_n$ is convergent then the series $\sum_{n\geq 0} u_n$ is convergent. • If $l = +\infty$ and the series $\sum_{n\geq 0} v_n$ is divergent then the series $\sum_{n\geq 0} u_n$ is divergent. • If $l \neq 0$ and $l \neq +\infty$ then the two series $\sum_{n\geq 0} u_n$ and $\sum_{n\geq 0} v_n$ are of the same nature.

1.2.2 Usual rules of convergence

Definition 1.2.2. We call a Riemann series any numerical series whose general term $u_n = \frac{1}{n^{\alpha}}.$

Proposition 1.2.2. *The Riemann series is convergent for all* $\alpha > 1$ *.*

Proposition 1.2.3. (*Riemann's rule*)

The Riemann rule amounts to comparing a series with positive terms to a Riemann series.

Let
$$\sum_{n\geq 1} u_n$$
 be a series with positive real terms and let $\alpha \in \mathbb{R}$, suppose that there exists
a positive real l (or $l = +\infty$) such that $\lim_{n \to +\infty} n^{\alpha} u_n = l$
• If $l = 0$ and $\alpha > 1$ then the series $\sum_{n\geq 1} u_n$ is convergent.
• If $l = +\infty$ and $\alpha \le 1$ then the series $\sum_{n\geq 1} u_n$ is divergent.
• If $l \neq 0$ and $l \neq +\infty$ then the two series $\sum_{n\geq 1} u_n$ and $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ are of the same nature.

Proposition 1.2.4. (D'Alembert's rule) Let $\sum_{n\geq 1} u_n$ be a series with strictly positive real terms, suppose that there exists a positive real l (or $l = +\infty$) such that $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$ • If l < 1 then the series $\sum_{n\geq 1} u_n$ is convergent. • If l > 1 then the series $\sum_{n\geq 1} u_n$ is divergent.

Proposition 1.2.5. (*Cauchy rule*)

Let
$$\sum_{n\geq 1} u_n$$
 be a series with strictly positive real terms, suppose that there exists a positive real l (or $l = +\infty$) such that $\lim_{n \to +\infty} (u_n)^{\frac{1}{n}} = l$
• If $l < 1$ then the series $\sum_{n\geq 1} u_n$ is convergent.
• If $l > 1$ then the series $\sum_{n\geq 1} u_n$ is divergent.