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In general, the real function of several real variables are of the form

y=f(x1,x2,- -+, %)

where x1, x5, -+, x, and y are real numbers.

1.1 Functions of two variables

Definition 1.1.1.

We call a function of two variables a function f from R* into R

f: R? — R

xy) — fxy)

Definition 1.1.2.

We call the domain of definition of f denoted Dy the set of elements of R* which have an

image by f

Ds={(x,y) € R* f(x,y) is defined }

Example 1.1.1. The function f(x, y) = /1 — x2 — y? is a function of two variables whose

Dy is the disk with center (0.0) and radius 1

Df={(x,y) e R* ,x*+y* <1}

1.1.1 Graphic representation

Let f be a function of two variables. We call graph of f a part of R* X R such that

Gy ={(,y,2) e R | z= f(x,y),(x,y) € D}
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Gyis calledé surface area.

1.1.2 Partial derivatives of order 01

Let f be a function of two variables defined on a part D of IR? and Let (x, v), (xo, ¥o)
be two vectors of R?.

When we fix one of the two variables we obtain a real function of a single real
variable.

— If we fix y (let’s say y = y) we can study f as a function of the single variable

xie. f(x, o) = fi(x) and we can calculate its derivative at x, when this limit exists

lim f1(x) = fi(xo)

X—Xo X — X

fi(xo + 1) = f1(xo)

fi(xo)

= lim

h—s0 h

i f(xo+h,yo0) = f(x0, Yo)
= lim

—s0 h

— If we fix x (let’s say x = xp) we can study f as a function of the single
variable y i.e. f(xo,v¥) = f2(y) and we can calculate its derivative at y, when this

limit exists

flye) = lim Y2 R00

y—Yo Y—Yo
) —
lim fo(yo +h) = fo(vo)

h—0 h
— lim f(xo, yo +h) = f(xo, Yo)
h—0 ]’l
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Definition 1.1.3.

— We call the partial derivative of f at the point (xo, yo) with respect to the variable x

the real f|(x) and we denote it f)(xo, yo) or g—ﬁ(xo, Yo)

f(xo +h, yo) — f(x0, Yo)
h

%
fz(xo, o) = a—i(xofyo) = ;}E})

— We call the partial derivative of f at the point (xo, yo) with respect to the variable y

the real f,(yo) and we denote it fy’(xo, Yo) or g—fyf(xo, Yo)

J o) e,
fy/(xo, Yo) = a—jyf(xo,yo) = ;}E{}) f(x0, 0 + 2 f(x0, ¥0)

1.1.3 Gradient
Definition 1.1.4.

If the function f admits partial derivatives of order 01 at the point (xo, Yo), the vector
grad f(xo, yo) defined by

J 0
gradf(xo, yo) = (a—i(xo,yo)f a—]yf(xo,yo))

and we denote it by V f(xo, Yo)
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1.1.4 Partial derivatives of order 02

Definition 1.1.5.

Under condition of existence, we call partial derivatives of order 02 of f at the point (xo, yo)
the partial derivatives of the functions fy = (x,y) — fi(x,y)and f; = (x,y) — f(x,y)

We will therefore have four derivatives of order 02

. f 8[3f]
fa= 52~ 5xlox
., Of dydf
T Jyox 8y[8x]
. Pf a[af]
I = 57 = aylay

Pf d(af

5= 5y ™ axl 3y

Example 1.1.2. Partial derivatives of order 01 and 02 of the function f(x,y) = x> + y* +

3xy
of o
S Y) =2x+3y @(x, y) = 2y + 3x
ey =2 %&x, =2
agy(x' y) =3 ;;—a];(x, =3

1.1.5 Differentials

Let f be a function of two variables and My(xy, o) be a point of IR?, the map

u: R> — R

) 0
(h, hp) +— hl&—i(MO)"‘hz&—]j;(Mo)
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is linear of R? into R i.e.

u(p +q) = u(p) +u(q) Vp,qeR?
u(Ap) = Au(p) ¥peR* YAeR

The map u is said to be differential from f to M, and we denote it d f(M,)

Theorem 1.1.1. Let f be a function defined in the neighborhood of My € R? and
admitting continuous partial derivatives in the neighborhood of My, then f is differ-

entiable in My and

) 0
df(My) = %(Mo)dx + a—?/f(Mo)dy

1.2 Double integral

The double integral is the generalization of a simple integral, i.e. the double inte-
gral is calculated by making two successive integrations denoted f fD f(x, y)dxdy

where f is a continuous function on a finite domain D of the plane R?.

1.2.1 Integration on a rectangle

Let D = [a,b] X [c,d] be a rectangle of R? and let f be a continuous function on D

with real values, then

f fD fx, y)dxdy = f b[ f df(x,y)dy]dx

and according to Fubini’s theorem, we can also write

ffo(x, y)dxdy = fab[‘fcdf(x, y)d}/]dx = ‘[Cd[f;f(x, y)dx]dy
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Example 1.2.1. Calculate the following double integral:

I=ff2xdx dy D =[-1,2] x[-1,1]
D

—~
Il
) pJ
N
19
[
=
_[u
<
Il
Lo
—
Lo
N
=
U
ll]
QU
<

1
f3dy=6
-1

Remark 1.2.1. If f(x,y) = g(x)h(y) where g : [a,b] — Rand h: [c,d] — R

are continuous functions, then

| b | e [ s [ ) dy

1.2.2 Integration on a non-rectangular domain

If the domain of integration D is of the form
D={(xy) €eR a<x<band y1(x) <y < ya(x)}

Then

ffD f(x, y)dxdy = Li:b[ﬁiizx) flx, y)dy]dx

The general method of calculating f fD f(x, y)dxdy consists of first integrating with
respect to a variable, y for example, the limits depending on x then to integrating

with respect to the other variable.

Example 1.2.2. Calculate the following double integral:
I:ffnydxdy where DZ{(X,y)E]R2| %y=0, x+y<1)

7
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We have
D={xy)eR) 0<x<land0<y<1-x}

Then

~
Il

1 1-x

ffxydxdy:f[f xydy]dx

D 0o LJdo

1

1 21—x

fo[zxy]o dx

1
_ 1 2
= 2fox(l X)” dx

1 1
= —fx3—2x2+xdx
2 Jo

1
24

1.3 Triple integral

The principle of the triple integral is the same as for the double integral, just

replacing a small surface element with a small volume element.

1.3.1 Fubini’s theorem on a parallelepiped

Theorem 1.3.1. Let f be a continuous function on a parallelepiped P = [a,b] X

[c,d] X [e, f], then we have

f f ﬁ f(x,y,z)dxdydz

j’;b f If f(x, y,z)dzdy]dx
- fcd:jj feff(x,y,z)dzdx]dy
ff fab f fx,, dydx iz
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Example 1.3.1. Calculate I = fol fol fol 2(xy +yz+ zx)dxdydz

1 1yl
I = f f [f 2(xy+yz+zx)dx]dydz
o Jo LJo
1l 1
f f [x2y+2yzx+zx2] dydz
0
f f Yy +2yz + zdydz

[l
h

+

<,

N

+

N
=

_u
N

1.3.2 Fubini’s theorem on a domain P of R3

The idea is to take one of the three variables x, y,z varies between two extreme
limits a and b let us suppose for example z therefore the plane domain obtained
by cutting the volume P by a plane z = constant is a simple domain so that we can

calculate the double integral f f fD f(x,y,z)dxdy and we have

ffpf(x, y,z)dxdydz = j;b [fo(x, Y, z)dxdy]dz

Example 1.3.2. Calculate the following integral:

:ffdxdydz ol P:{(x,y,z)elR3| x,Y,220, x+y+2z<1}
P

It is therefore a question of calculating the volume of P, we cut P by a horizontal plane

z = zy we then find a triangle D according to x and y limited by x = 0,y = 0 and
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x+y=1-2zsuch that z, € [0, %] and therefore

Then

I = fffdx dy dz
P
3 pl-2z pl-2zx
f f f dydxdz
0o Jo 0
1 Al-2z
f f 1-2z—xdxdz
0o Jo

2 1
f 272 -2z + = dz
0 2

1

12

10
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