

Real functions of a real variable

– Conten	ts	
	Recalls and definitions	2
1.2	Limit of a function	5
1.3	Continuous functions	8
1.4	Differentiable functions	10
1.5	Integrals and primitives	18

1.1 Recalls and definitions

1.1.1 Intervals of \mathbb{R}

Let $a, b \in \mathbb{R}$ such that a < b, we call

• The open interval of ends *a* and *b* the set

$$]a,b[= \left\{ x \in \mathbb{R}, \ a < x < b \right\}$$

② The closed interval of ends *a* and *b* the set

$$[a,b] = \left\{ x \in \mathbb{R}, \ a \le x \le b \right\}$$

• The semi-open interval, the sets

$$[a, b] = \left\{ x \in \mathbb{R}, \ a \le x < b \right\}$$
$$[a, b] = \left\{ x \in \mathbb{R}, \ a < x \le b \right\}$$

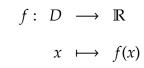
• The open interval of center *a* the set

$$]a - \varepsilon, a + \varepsilon [with \ \varepsilon > 0$$
$$[a, +\infty[= \{x \in \mathbb{R}, \ x \ge a\}]$$
$$]a, +\infty[= \{x \in \mathbb{R}, \ x > a\}$$
$$] - \infty, a] = \{x \in \mathbb{R}, \ x \le a\}$$
$$] - \infty, a[= \{x \in \mathbb{R}, \ x < a\}$$

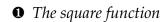
1.1.2 Real functions of a real variable

Definition 1.1.1.

A real (or numerical) function of a real variable is a map f of a part D of \mathbb{R} to values in \mathbb{R} , we note



Example 1.1.1.



$$f: \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$x \longmapsto x^2$$

2 The exponential function

$$f: \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$x \longmapsto e^x$$

③ The cosine function

$$f: \mathbb{R} \longrightarrow [-1,1]$$
$$x \longmapsto \cos(x)$$

Domain of definition 1.1.3

Definition 1.1.2.

The domain of definition of a function f denoted D_f is the set of elements x for which the function f is defined

 $D_f = \{x \in \mathbb{R}, f(x) \text{ is defined}\}$

Practical determination of the domain of definition 1.1.4

Let *f* and *g* be two functions

• 1^{*st*} case: function of type $\frac{f}{g}$ is defined for all $g \neq 0$ **2** 2^{nd} case: function of type \sqrt{f} is defined for all $f \ge 0$ • 3^{rd} case: function of type $\frac{f}{\sqrt{g}}$ is defined for all g > 0

Example 1.1.2.

 $f(x) = \frac{x^2 + 2x + 5}{x^2 - 1}$

$$D_f = \{x \in \mathbb{R}, x^2 - 1 \neq 0\}$$

= $\{x \in \mathbb{R}, (x - 1)(x + 1) \neq 0\}$
= $\mathbb{R} - \{-1, 1\}$

 $g(x) = \frac{3x+5}{\sqrt{2x-1}}$ $D_f = \left\{ x \in \mathbb{R}, \ 2x - 1 > 0 \right\}$ $= \left\{ x \in \mathbb{R}, \ x > 1/2 \right\}$ $=]1/2, +\infty[$

General information on functions We suppose that $\forall x \in D, -x \in D$. The function $f : D \longrightarrow \mathbb{R}$ is said

- Even function if $\forall x \in D$, f(-x) = f(x). The curve C_f in an orthonormal coordinate system is symmetrical with respect to the axis (*oy*) ($f(x) = x^2$)
- ❷ Odd function if $\forall x \in D$, f(-x) = -f(x). The curve C_f in an orthonormal coordinate system is symmetrical with respect to the origin $(f(x) = \sin(x))$
- **③ Periodic function** if there exists *T* > 0 such that $\forall x \in D, x + T \in D$ and f(x + T) = f(x). The smallest value of *T* is called the period of *f* as the functions cos and sin are periodic functions of period 2*π*
- **4** Major function $\iff \exists M \in \mathbb{R}, \forall x \in D, f(x) \le M$
- **6** Minor function $\iff \exists m \in \mathbb{R}, \forall x \in D, f(x) \ge m$
- **6** Bounded function $\iff \exists m, M \in \mathbb{R}, \forall x \in D, m \le f(x) \le M$
- **⑦** Increasing function (resp strictly increasing) if $\forall x, y \in D \ x < y \implies f(x) ≤ f(y)$ (resp f(x) < f(y))

③ Decreasing function(resp strictly decreasing) if $\forall x, y \in D \ x < y \implies f(x) ≥$ f(y) (resp f(x) > f(y))

• Monotonous function if it is increasing or decreasing on *D*.

1.2 Limit of a function

1.2.1 Neighborhood of a point *x*₀

Definition 1.2.1.

We call neighborhood of a point x_0 *any open interval of the form* $]x_0 - \varepsilon, x_0 + \varepsilon[, \varepsilon > 0$

$$V_{\varepsilon}(x) = \left\{ x \in \mathbb{R}, \ x_0 - \varepsilon < x < x_0 + \varepsilon \right\}$$
$$= \left\{ x \in \mathbb{R}, \ |x - x_0| < \varepsilon \right\}$$

1.2.2 Function defined in the vicinity of a point x_0

Definition 1.2.2.

We say that a function $f : D \mapsto \mathbb{R}$ is defined in the neighborhood of a point $x_0 \in \mathbb{R}$ if $\exists \varepsilon > 0,]x_0 - \varepsilon, x_0 + \varepsilon [\subseteq D$

1.2.3 Limit of a function

Definition 1.2.3.

• We say that a function f defined in the vicinity of a point x_0 admits a limit $l \in \mathbb{R}$ as x tends towards x_0 if

$$\forall \varepsilon > 0 \ \exists \sigma > 0 \ \forall x \neq x_0 \ |x - x_0| < \sigma \Longrightarrow |f(x) - l| < \varepsilon$$

and we write $\lim_{x \to x_0} f(x) = l$.

2 *limit on the right* We say that a function f has a right limit at the point x_0 if

 $\forall \varepsilon > 0 \ \exists \sigma > 0 \ \forall x \ x_0 < x < x_0 + \sigma \Longrightarrow |f(x) - l| < \varepsilon$

and we write $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0} f(x) = l$.

8 *Limit on the left* We say that a function f has a left limit at the point x_0 if

 $\forall \varepsilon > 0 \ \exists \sigma > 0 \ \forall x \ x_0 - \sigma < x < x_0 \Longrightarrow |f(x) - l| < \varepsilon$

and we write $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0} f(x) = l$.

Remark 1.2.1.

① If f admits a limit at the point x_0 then this limit is unique and we have

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = l$

 $if \lim_{x \to x_0} f(x) \neq \lim_{x \to x_0} f(x) \text{ then } f \text{ does not admit a limit at the point } x_0$

1.2.4 Operations on limits

Let *f* and $g : D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be two functions satisfying $\lim_{x \to x_0} f(x) = l_1$ and $\lim_{x \to x_0} g(x) = l_2$

$$\lim_{x \to x_0} \left(f(x) + g(x) \right) = l_1 + l_2$$

$$\lim_{x \to x_0} \left(f(x) \cdot g(x) \right) = l_1 \cdot l_2$$

$$\lim_{x \to x_0} |f(x)| = |l_1|$$

6
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}, \ l_2 \neq 0$$

$$\textbf{G} \text{ Si } f(x) < g(x) \Longrightarrow l_1 < l_2$$

1.2.5 Indeterminate forms

There are four algebraic indeterminate forms (IF)

$$\left(\frac{0}{0},\frac{\infty}{\infty},0\times\infty,+\infty-\infty\right)$$

and three exponential forms

$$\left(0^{0},\infty^{0},1^{\infty}\right)$$

Example 1.2.1.

Calculate the following limits

$$\begin{array}{l}
\mathbf{0} \quad \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0} (FI) \\
\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2
\end{array}$$

$$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{x^2} = +\infty - \infty(FI) \\ \lim_{x \to 0^+} \frac{1}{x} - \frac{1}{x^2} = \lim_{x \to 0^+} \frac{1}{x} \left(1 - \frac{1}{x}\right) = -\infty.$$

1.3 Continuous functions

Definition 1.3.1.

- Continuous functions at a point: we say that a function f is continuous at the point $x_0 \in \mathbb{R}$ if it is defined in a neighborhood of x_0 and $\lim_{x \to x_0} f(x) = f(x_0)$.
- *Q* Continuous functions on a set: we say that a function f is continuous on a set $D \subset \mathbb{R}$ if it is continuous at every point of D.

1.3.1 Operations on continuous functions

Let *f* and *g* be two continuous functions in x_0 and let $\lambda \in \mathbb{R}$, then $(f \pm g), (f \times g), (\lambda f), (|f|)$ and $(\frac{f}{g})$ $(g(x_0) \neq 0)$ are continuous functions in x_0 .

1.3.2 Extension by continuity

Let *f* be a function defined and continuous on $I - \{x_0\}$, if $\lim_{x \to x_0} f(x) = l$ (l exists and finite) then f(x) can be extended by continuity at the point x_0 to the function *g* defined by

$$g(x) = \begin{cases} f(x) & \text{if } x \neq x_0 \\ \lim_{x \to x_0} f(x) & \text{if } x = x_0 \end{cases}$$

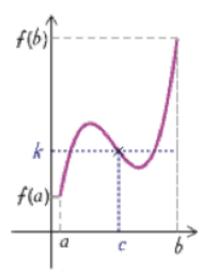
Example 1.3.1.

The function $f(x) = e^{-\frac{1}{x^2}}$ is continuous on $\mathbb{R} - \{0\}$ and we have $\lim_{x \to 0} f(x) = 0$ therefore

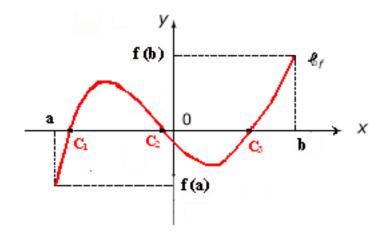
f(x) can be extended by continuity at the point 0 to the function

$$g(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Theorem 1.3.1. (Intermediate Value Theorem) Let f be a defined and continuous function on any interval $I \subset \mathbb{R}$ and let $a, b \in I$ (a < b). Then for every real k strictly included between f(a) and f(b) there exists $c \in]a, b[$ such that f(c) = k



Theorem 1.3.2. Let f be a defined and continuous function on [a,b] and f(a)f(b) < 0, then there exists at least one point $c \in]a, b[$ such that f(c) = 0.



1.4 Differentiable functions

Definition 1.4.1.

Let $f: I \longrightarrow \mathbb{R}$ and let $x_0 \in I$

• We say that the function f is differentiable at the point x_0 if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists and finite. This limit is called derivative of f at the point x_0 and we denote it $f'(x_0)$.

if $h = x - x_0$ *, we obtain*

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

2 We say that the function f is differentiable on the right at x_0 if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists and finite and we denote it by $f'_d(x_0)$ or $f'_+(x_0)$.

• We say that the function f is differentiable on the left at x_0 if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists and finite and we denote it by $f'_g(x_0)$ or $f'_-(x_0)$.

Remark 1.4.1.

f is differentiable at the point
$$x_0 \iff \begin{cases} f'_d(x_0) \text{ exists and finite} \\ f'_g(x_0) \text{ exists and finite} \\ f'_d(x_0) = f'_g(x_0) \end{cases}$$

Example 1.4.1.

 $f(x) = |x| + x^2, \, x_0 = 0$

f is differentiable at the point
$$x_0 = 0 \iff \begin{cases} f'_d(0) \text{ exists and finite} \\ f'_g(0) \text{ exists and finite} \\ f'_d(0) = f'_g(0) \end{cases}$$

We have

$$f'_{d}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

=
$$\lim_{x \to 0} \frac{|x| + x^{2}}{x}$$

=
$$\lim_{x \to 0} \frac{x + x^{2}}{x}$$

=
$$\lim_{x \to 0} 1 + x$$

= 1

and

$$f'_{g}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

=
$$\lim_{x \to 0} \frac{|x| + x^{2}}{x}$$

=
$$\lim_{x \to 0} \frac{-x + x^{2}}{x}$$

=
$$\lim_{x \to 0} -1 + x$$

=
$$-1$$

we have $f'_d(0)$ and $f'_g(0)$ exist but $f'_d(0) \neq f'_g(0)$, then the function f is not differentiable at the point $x_0 = 0$

1.4.1 Operations on differentiable functions

Let $f, g: I \longrightarrow \mathbb{R}$ be two differentiable functions in x_0 and let $\lambda \in \mathbb{R}$, then

$$\mathbf{0} \ \left(\lambda f\right)'(x_0) = \lambda f'(x_0)$$

$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

$$(f.g)'(x_0) = f'(x_0).g(x_0) + f(x_0).g'(x_0)$$

• If
$$g(x_0) \neq 0$$
 then $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g^2(x_0)}$

⑤ Derivative of a composite functions: let $f : I \longrightarrow \mathbb{R}$ and $g : J \longrightarrow \mathbb{R}$ or $f(I) \subset J$ if f is differentiable at x_0 and g is differentiable at the point $f'(x_0)$ then the composition $g \circ f$ is differentiable at x_0 and we have

$$\left(g\circ f\right)'(x_0)=f'(x_0)g'(f(x_0))$$

Fonction	Dérivée	Intervalle de dérivabilité
f(x) = k avec k constante	f'(x) = 0	R
f(x) = x	f'(x) = 1	R
f(x) = ax + b	f'(x) = a	R
$f(x) = x^2$	f'(x) = 2x	R
$f(x) = x^n$ avec $n \in \mathbb{N}^\star$	$f'(x) = nx^{n-1}$	R
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	R*
$f(x) = \frac{1}{x^n} = x^{-n}$ avec $n \in \mathbb{N}$	$f'(x) = -\frac{n}{x^{n+1}} = -nx^{-n-1}$	R*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0,+∞[
$f(x)=x^{\alpha}$ avec $\alpha\in\mathbb{R}$	$f'(x) = \alpha x^{\alpha - 1}$	\mathbbm{R} si $\alpha \geqslant 0$ et \mathbbm{R}^{\star} si $\alpha < 0$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	R
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	R
$f(x) = \tan(x)$	$f'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	$\left[\frac{\pi}{2} + k\pi; \frac{\pi}{2} + (k+1)\pi\right] \text{ avec } k \in \mathbb{Z}$
$f(x) = e^x$	$f'(x) = e^x$	R
$fx) = \ln(x)$	$f'(x) = \frac{1}{x}$	$]0, +\infty[$

1.4.2 Derivatives of usual functions

1.4.3 Fundamental theorems of differentiable functions

Theorem 1.4.1. (Rolle's theorem) Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function which verifies • f is continuous on [a, b]• f is differentiable on]a, b[• f(a) = f(b)then there exists $c \in]a, b[$ such that f'(c) = 0 **Theorem 1.4.2.** (Mean value theorem)

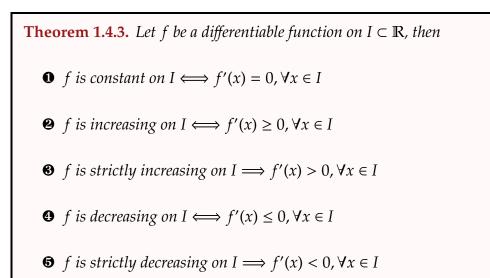
Let $f : [a, b] \longrightarrow \mathbb{R}$ *be a function which verifies*

• f is continuous on [a, b]

\boldsymbol{\Theta} *f* is differentiable on]*a*, *b*[

then there exists at least one point $c \in]a, b[$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

1.4.4 Application of the derivative to the study of monotonicity



Application of the derivative to the calculate the limits 1.4.5

Theorem 1.4.4. (*Hopital's rule*)

Let f, g be two defined and differentiable functions in a neighborhood v of x_0 such that

1
$$g(x) \neq 0, g'(x) \neq 0 \text{ on } v.$$

 $\mathfrak{O} \quad f(x_0) = g(x_0) = 0.$ If $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists finite or infinite, then

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$$

This result applies to indeterminate forms $\left(\frac{0}{0} \text{ or } \frac{\infty}{\infty}\right)$

Example 1.4.2.

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = \frac{\infty}{\infty} (IF), according to the Hopital's rule$$

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0.$$

$$intro \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0} = (IF), according to the Hopital's rule$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{2x}{1} = 2.$$

Maximum, minimum (extremum) 1.4.6

Let $f : I \longrightarrow \mathbb{R}$ and let $x_0 \in I$

• We say that f admits a local maximum at x_0 if

 $\exists J \subset I \text{ of center } x_0, \forall x \in J \quad f(x) \leq f(x_0)$

2 We say that f admits a local minimum at x_0 if

$$\exists J \subset I \text{ of center } x_0, \forall x \in J \quad f(x) \ge f(x_0)$$

- We say that *f* admits a local extremum at *x*₀ if *f* admits at *x*₀ a local maximum or minimum
- If *f* is differentiable at x_0 and $f'(x_0) = 0$, then x_0 is called the critical point of *f*.
- **⑤** If $f'(x_0) = 0$ and $f''(x_0) \neq 0$, then f admits an extremum at x_0 (maximum if $f''(x_0) < 0$ and minimum if $f''(x_0) > 0$).

Example 1.4.3.

f(x) = x² - 1
The critical points
We have

$$f'(x) = 2x$$

So

$$f'(x) = 0 \iff 2x = 0 \iff x = 0$$
 is a critical point of f

- The nature of critical points

 $f''(x) = 2 \neq 0$ therefore f admits a minimum at the point $x_0 = 0$ because f''(0) > 0.

2 $f(x) = x^2 e^{-x}$

- The critical points

we have

$$f'(x) = xe^{-x}(2-x)$$

So

$$f'(x) = 0 \iff xe^{-x}(2-x) = 0 \iff x = 0 \text{ or } x = 2$$

- The nature of critical points

We have

$$f''(x) = e^{-x}(1-x)(2-x) - xe^{-x}$$

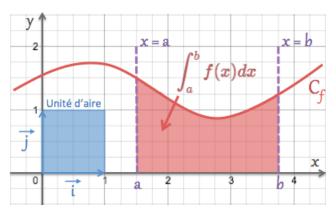
for x = 0, f''(0) = 2 > 0 so x = 0 is a minimum.

for x = 2, $f''(2) = -2e^{-2} < 0$ so x = 2 is a maximum.

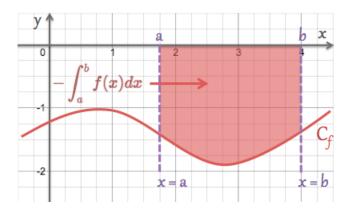
1.5 Integrals and primitives

Integration is linked to the problem of calculating a surface *A* delimited by the curve of a function *f* defined on a segment [a, b] and the lines x = a, x = b and y = 0

1 If *f* is positive then $A = \int_a^b f(x) dx$

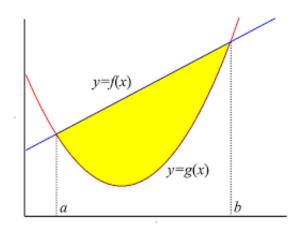


❷ If *f* is negative then −*f* is positive and the curves C_f and C_{-f} are symmetrical about the x-axis $A = \int_a^b -f(x)dx$



• Surface between two curves

$$A = \int_{a}^{b} (f - g)(x) dx \quad si \ f > g$$
$$A = \int_{a}^{b} (g - f)(x) dx \quad si \ f < g$$



Definition 1.5.1.

We call the primitive of a function $f : [a,b] \longrightarrow \mathbb{R}$, any differentiable function $F : [a,b] \longrightarrow \mathbb{R}$ such that

$$F'(x) = f(x), \quad \forall x \in [a, b]$$

Theorem 1.5.1. If a function f admits an primitive F on [a, b] then the set

$$\{F+c, c\in\mathbb{R}\}$$

is the set of all primitives of f on [a, b]

Example 1.5.1.

• $f(x) = 2x + 1 \Longrightarrow F(x) = x^2 + x + c$ where c is a constant

 $f(x) = x^2 + \cos(x) \Longrightarrow F(x) = \frac{x^3}{3} + \sin(x) + c \text{ where } c \text{ is a constant.}$

Theorem 1.5.2. *Every continuous function on* [*a*, *b*] *admits a primitive on* [*a*, *b*]

Remark 1.5.1.

The set of all primitives of the function $f : [a, b] \longrightarrow \mathbb{R}$ is called the indefinite integral of f and denoted by $\int f(x)dx$

$$\int f(x)dx = F + c, \ c \in \mathbb{R}$$

Example 1.5.2.

$$\int \sin(x)dx = -\cos(x) + c, \ \ c \in \mathbb{R}$$

Definition 1.5.2.

Let f be a continuous function on [a, b] and F one of its primitives. We call the integral of f between a and b the quantity

$$\int_{a}^{b} f(x)dx = \left[F(x)\right]_{a}^{b} = F(b) - F(a)$$

Example 1.5.3.

Using the primitives, we obtain

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}$$

1.5.1 Properties of the integral

Chasles relation

Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function and let $c \in]a, b[$, then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

 $\int_{a}^{a} f(x)dx = 0 \text{ and } \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$

Linearity of the integral

Let *f*, *g* be two continuous functions on [*a*, *b*] and $\alpha, \beta \in \mathbb{R}$, then

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

Positivity of the integral

Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function, then

$$f \text{ is positive} \Longrightarrow \int_{a}^{b} f(x) dx \ge 0$$

Increasing of the Integral

Let f, g be two continuous functions on [a, b], then

$$f(x) \le g(x) \Longrightarrow \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$

Remark 1.5.2.

$$\int_{a}^{b} f(x)g(x)dx \neq \int_{a}^{b} f(x)dx \int_{a}^{b} g(x)dx$$

and

$$\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx$$

1.5.2 Integration methods

Direct integration

Table of usual primitives

	haque ligne, F est une primitive de f sur l'intervalle I . Ces prim					
ine constante près noté	- C.					
f(x)	I	$F(\mathbf{z})$				
λ (constante)	R	$\lambda x + C$				
x	R	$\frac{x^2}{2} + C$				
$x^n \ (n \in \mathbb{N}^*)$	R	$\frac{x^{n+1}}{n+1} + C$				
1 T]-∞,0[ou]0,+∞[$\ln x + C$				
$\frac{1}{x^n}$ où $n \in \mathbb{N}$, $n \ge 2$]-∞,0[ou]0,+∞[$-\frac{1}{(n-1)x^{n-1}}+C$				
$\frac{1}{\sqrt{x}}$]0,+∞[$2\sqrt{x} + C$				
lnr	R [*] ₊	$x \ln x - x + C$				
ez	R	$e^x + C$				
$\sin x$	R	$-\cos x + C$				
COS Z	R	$\sin x + C$				

Integration by parts

Let *f* and *g* be two differentiable functions on [*a*, *b*], then we have

$$\int_a^b f'(x)g(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f(x)g'(x)dx$$

This result is a direct consequence of the derivative of the product of two functions.

Example 1.5.4.

Calculate $\int_0^1 x e^x dx$ We pose

$$\begin{cases} f(x) = x & f'(x) = 1 \\ g'(x) = e^x & g(x) = e^x \end{cases}$$

then

$$\int_0^1 x e^x dx = \left[x e^x \right]_0^1 - \int_0^1 e^x dx = e - \left[e^x \right]_0^1 = 1$$

Change of variable

Let *f* be a continuous function on [*a*, *b*] and *g*' exists and continuous. This method consists of putting x = g(t) in the integral and replacing dx by g'(t)dt

$$\int_{g(a)}^{g(b)} f(x)dx = \int_a^b f(g(t)) g'(t)dt$$

Example 1.5.5.

Calculate $\int_{1}^{4} \frac{1}{x + \sqrt{x}} dx$ by the change of variable $t = \sqrt{x} \implies x = t^{2} \implies dx = 2tdt$

$$\begin{cases} Si \ x = 1 & t = 1 \\ Si \ x = 4 & t = 2 \end{cases}$$

thus

$$\int_{1}^{4} \frac{1}{x + \sqrt{x}} dx = \int_{1}^{2} \frac{2t}{t^{2} + t} dt = 2 \left[\ln|t+1| \right]_{1}^{2} = 2 \ln \frac{3}{2}$$

Proposition 1.5.1. *Let f be a continuous function on* [*a*, *b*]*, then*

 $\bullet If f is a even function, then$

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

② If f is an odd function, then

$$\int_{-a}^{a} f(x)dx = 0$$

1.5.3 Opérations et primitives

