

Real functions of a real variable

1.1 Recalls and definitions

1.1.1 Intervals of R

Let $a, b \in \mathbb{R}$ such that $a < b$, we call

❶ The open interval of ends *a* and *b* the set

$$
]a, b[= \left\{ x \in \mathbb{R}, \ a < x < b \right\}
$$

❷ The closed interval of ends *a* and *b* the set

$$
[a, b] = \left\{ x \in \mathbb{R}, \ a \le x \le b \right\}
$$

❸ The semi-open interval, the sets

$$
[a, b] = \{x \in \mathbb{R}, a \le x < b\}
$$

$$
[a, b] = \{x \in \mathbb{R}, a < x \le b\}
$$

❹ The open interval of center *a* the set

$$
]a - \varepsilon, a + \varepsilon [\text{ with } \varepsilon > 0
$$

$$
[a, +\infty[= \{x \in \mathbb{R}, x \ge a \}
$$

$$
]a, +\infty[= \{x \in \mathbb{R}, x > a \}
$$

$$
] - \infty, a] = \{x \in \mathbb{R}, x \le a \}
$$

$$
] - \infty, a[= \{x \in \mathbb{R}, x < a \}
$$

1.1.2 Real functions of a real variable

Definition 1.1.1. *.*

A real (or numerical) function of a real variable is a map f of a part D of R *to values in* R*, we note*

$$
f: D \longrightarrow \mathbb{R}
$$

$$
x \longmapsto f(x)
$$

Example 1.1.1. *.*

$$
f: \mathbb{R} \longrightarrow \mathbb{R}^+
$$

$$
x \longmapsto x^2
$$

❷ *The exponential function*

$$
f: \mathbb{R} \longrightarrow \mathbb{R}^+
$$

$$
x \longmapsto e^x
$$

❸ *The cosine function*

$$
f: \mathbb{R} \longrightarrow [-1,1]
$$

$$
x \longmapsto \cos(x)
$$

1.1.3 Domain of definition

Definition 1.1.2. *.*

The domain of definition of a function f denoted D^f is the set of elements x for which the function f is defined

 $D_f = \{x \in \mathbb{R}, f(x) \text{ is defined}\}\$

1.1.4 Practical determination of the domain of definition

Let f and g be two functions

0 1st case: function of type $\frac{f}{f}$ $\frac{y}{g}$ is defined for all $g \neq 0$ \bullet 2nd case: function of type \sqrt{f} is defined for all $f \ge 0$ **❸** 3^{*rd*} case: function of type $\frac{f}{f}$ *g* is defined for all *g* > 0

Example 1.1.2. *.*

 $f(x) = \frac{x^2 + 2x + 5}{x^2 - 1}$ $\sqrt{x^2-1}$

$$
D_f = \{x \in \mathbb{R}, x^2 - 1 \neq 0\}
$$

= $\{x \in \mathbb{R}, (x - 1)(x + 1) \neq 0\}$
= $\mathbb{R} - \{-1, 1\}$

 $g(x) = \frac{3x+5}{\sqrt{2}}$ $\sqrt{2x-1}$ $D_f = \{x \in \mathbb{R}, 2x - 1 > 0\}$ $= \{x \in \mathbb{R}, x > 1/2\}$ $=$ 11/2, +∞[

General information on functions We suppose that $\forall x \in D, -x \in D$. The function $f: D \longrightarrow \mathbb{R}$ is said

- **Ⅰ Even function** if $\forall x \in D$, $f(-x) = f(x)$. The curve C_f in an orthonormal coordinate system is symmetrical with respect to the axis (*oy*) ($f(x) = x^2$)
- **❷** Odd functionif $\forall x \in D$, $f(-x) = -f(x)$. The curve C_f in an orthonormal coordinate system is symmetrical with respect to the origin $(f(x) = sin(x))$
- Θ Periodic function if there exists $T > 0$ such that $\forall x \in D, x + T \in D$ and $f(x + T) = f(x)$. The smallest value of *T* is called the period of *f* as the functions cos and sin are periodic functions of period 2π
- ❹ **Major function**⇐⇒ ∃*M* ∈ R, ∀*x* ∈ *D*, *f*(*x*) ≤ *M*
- ❺ **Minor function** ⇐⇒ ∃*m* ∈ R, ∀*x* ∈ *D*, *f*(*x*) ≥ *m*
- **①** Bounded function \Longleftrightarrow ∃*m*, *M* ∈ R, $\forall x \in D$, *m* ≤ $f(x)$ ≤ *M*
- \bullet Increasing function (resp strictly increasing) if $\forall x, y \in D$ *x* < *y* \Longrightarrow *f*(*x*) ≤ $f(y)$ (resp $f(x) < f(y)$)
- **O** Decreasing function(resp strictly decreasing) if $\forall x, y \in D$ $x < y \implies f(x) \ge$ $f(y)$ (resp $f(x) > f(y)$)
- ❾ **Monotonous function** if it is increasing or decreasing on *D*.

1.2 Limit of a function

1.2.1 Neighborhood of a point x_0

Definition 1.2.1. *.*

We call neighborhood of a point x_0 *any open interval of the form* $]x_0 - \varepsilon, x_0 + \varepsilon[, \varepsilon > 0$

$$
V_{\varepsilon}(x) = \{x \in \mathbb{R}, x_0 - \varepsilon < x < x_0 + \varepsilon\}
$$
\n
$$
= \{x \in \mathbb{R}, |x - x_0| < \varepsilon\}
$$

1.2.2 Function defined in the vicinity of a point x_0

Definition 1.2.2. *.*

We say that a function $f : D \mapsto \mathbb{R}$ *is defined in the neighborhood of a point* $x_0 \in \mathbb{R}$ *if* $\exists \varepsilon > 0, \,] x_0 - \varepsilon, x_0 + \varepsilon [\subseteq D$

1.2.3 Limit of a function

Definition 1.2.3. *.*

 \bullet *We say that a function f defined in the vicinity of a point* x_0 *admits a limit l* ∈ **R** *as x tends towards x*⁰ *if*

$$
\forall \varepsilon > 0 \ \exists \sigma > 0 \ \forall x \neq x_0 \ |x - x_0| < \sigma \Longrightarrow |f(x) - l| < \varepsilon
$$

and we write $\lim_{x \to x_0} f(x) = l$.

 Θ *limit on the right We say that a function f has a right limit at the point* x_0 *if*

 $\forall \varepsilon > 0 \ \exists \sigma > 0 \ \forall x \ x_0 < x < x_0 + \sigma \Longrightarrow |f(x) - l| < \varepsilon$

and we write $\lim_{x \to x_0^+}$ $f(x) = \lim$ $x \rightarrow x_0$ $f(x) = l$.

 \bullet *Limit on the left We say that a function f has a left limit at the point* x_0 *if*

 $\forall \varepsilon > 0 \; \exists \sigma > 0 \; \forall x \; x_0 - \sigma < x < x_0 \Longrightarrow |f(x) - l| < \varepsilon$

and we write $\lim_{x \to x_0^-}$ $f(x) = \lim$ $x \xrightarrow{0} x_0$ $f(x) = l$.

Remark 1.2.1. *.*

❶ *If f admits a limit at the point x*⁰ *then this limit is unique and we have*

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = l$ $x \xrightarrow{0} x_0$ $x \rightarrow x_0$

 \bullet *if* $\lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x)$ then f does not admit a limit at the point x_0 $x \xrightarrow{0} x_0$ $x \stackrel{\geq}{\rightarrow} x_0$

1.2.4 Operations on limits

Let *f* and $g: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be two functions satisfying $\lim_{x \to x_0} f(x) = l_1$ and $\lim_{x \to x_0} g(x) =$ l_2

$$
\Phi \lim_{x \to x_0} (f(x) + g(x)) = l_1 + l_2
$$

$$
\bullet \lim_{x\to x_0}\big(f(x).g(x)\big)=l_1.l_2
$$

$$
\mathbf{\Theta} \ \lim_{x \to x_0} af(x) = al_1 \ \ \forall a \in \mathbb{R}
$$

$$
\Phi \lim_{x \to x_0} |f(x)| = |l_1|
$$

$$
\bullet \ \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}, \ \ l_2 \neq 0
$$

$$
\bullet \ \text{Si } f(x) < g(x) \Longrightarrow l_1 < l_2
$$

1.2.5 Indeterminate forms

There are four algebraic indeterminate forms (IF)

$$
\Big(\frac{0}{0},\frac{\infty}{\infty},0\times\infty,+\infty-\infty\Big)
$$

and three exponential forms

$$
\left(0^0,\infty^0,1^\infty\right)
$$

Example 1.2.1. *.*

Calculate the following limits

$$
\begin{aligned} \n\bullet \lim_{x \to 1} \frac{x^2 - 1}{x - 1} &= \frac{0}{0} (FI) \\ \n\lim_{x \to 1} \frac{x^2 - 1}{x - 1} &= \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2 \n\end{aligned}
$$

$$
\begin{aligned} \n\mathbf{\Theta} \quad & \lim_{x \to 0^+} \frac{1}{x} - \frac{1}{x^2} = +\infty - \infty(FI) \\ \n& \lim_{x \to 0^+} \frac{1}{x} - \frac{1}{x^2} = \lim_{x \to 0^+} \frac{1}{x} \Big(1 - \frac{1}{x} \Big) = -\infty. \n\end{aligned}
$$

1.3 Continuous functions

Definition 1.3.1. *.*

- ❶ *Continuous functions at a point: we say that a function f is continuous at the point* $x_0 \in \mathbb{R}$ *if it is defined in a neighborhood of* x_0 *and* $\lim_{x \to x_0} f(x) = f(x_0)$ *.*
- ❷ *Continuous functions on a set: we say that a function f is continuous on a set D* ⊂ R *if it is continuous at every point of D.*

1.3.1 Operations on continuous functions

Let *f* and *g* be two continuous functions in x_0 and let $\lambda \in \mathbb{R}$, then $(f \pm g)$, $(f \times g)$, (λf) , $(|f|)$ and $(\frac{f}{g})$ $\frac{f}{g}$) ($g(x_0) \neq 0$) are continuous functions in x_0 .

1.3.2 Extension by continuity

Let *f* be a function defined and continuous on *I* – { x_0 }, if $\lim_{x\to x_0} f(x) = l$ (l exists and finite) then $f(x)$ can be extended by continuity at the point x_0 to the function *g* defined by

$$
g(x) = \begin{cases} f(x) & \text{if } x \neq x_0 \\ \lim_{x \to x_0} f(x) & \text{if } x = x_0 \end{cases}
$$

Example 1.3.1. *.*

The function $f(x) = e^{-\frac{1}{x^2}}$ *is continuous on* $\mathbb{R} - \{0\}$ *and we have* $\lim_{x\to 0} f(x) = 0$ *therefore*

f(*x*) *can be extended by continuity at the point* 0 *to the function*

$$
g(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
$$

Theorem 1.3.1. *(Intermediate Value Theorem) Let f be a defined and continuous function on any interval I* ⊂ R *and let a, b* ∈ *I* (a < b). Then for every real k strictly included *between* $f(a)$ *and* $f(b)$ *there exists* $c \in]a,b[$ *such that* $f(c) = k$

Theorem 1.3.2. Let f be a defined and continuous function on [a, b] and $f(a)f(b) < 0$, *then there exists at least one point c* \in *[a, b] such that f(c)* = 0*.*

1.4 Diff**erentiable functions**

Definition 1.4.1. *.*

Let $f: I \longrightarrow \mathbb{R}$ *and let* $x_0 \in I$

 \bullet *We say that the function f is differentiable at the point* x_0 *if the limit*

$$
\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}
$$

*exists and finite. This limit is called derivative of f at the point x*⁰ *and we denote it* $f'(x_0)$.

if $h = x - x_0$ *, we obtain*

$$
f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}
$$

❷ *We say that the function f is di*ff*erentiable on the right at x*⁰ *if the limit*

$$
\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}
$$

exists and finite and we denote it by $f'_{d}(x_0)$ *or* $f'_{+}(x_0)$ *.*

❸ *We say that the function f is di*ff*erentiable on the left at x*⁰ *if the limit*

$$
\lim_{x \stackrel{<}{\to} x_0} \frac{f(x) - f(x_0)}{x - x_0}
$$

exists and finite and we denote it by $f'_{g}(x_0)$ *or* $f'_{-}(x_0)$ *.*

Remark 1.4.1.

f is differentiable at the point
$$
x_0 \iff \begin{cases} f'_d(x_0) \text{ exists and finite} \\ f'_g(x_0) \text{ exists and finite} \\ f'_d(x_0) = f'_g(x_0) \end{cases}
$$

Example 1.4.1. *.*

 $f(x) = |x| + x^2, x_0 = 0$

f is differentiable at the point
$$
x_0 = 0 \iff \begin{cases} f_d'(0) \text{ exists and finite} \\ f_g'(0) \text{ exists and finite} \\ f_d'(0) = f_g'(0) \end{cases}
$$

We have

$$
f'_d(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}
$$

=
$$
\lim_{x \to 0} \frac{|x| + x^2}{x}
$$

=
$$
\lim_{x \to 0} \frac{x + x^2}{x}
$$

=
$$
\lim_{x \to 0} 1 + x
$$

= 1

and

$$
f'_{g}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}
$$

=
$$
\lim_{x \to 0} \frac{|x| + x^{2}}{x}
$$

=
$$
\lim_{x \to 0} \frac{-x + x^{2}}{x}
$$

=
$$
\lim_{x \to 0} -1 + x
$$

= -1

*we have f*_d^{ℓ}(0) *and f*_g^{ℓ}(0) *exist but f*_d^{ℓ}(0) \neq *f*_g^{ℓ} *g* (0)*, then the function f is not di*ff*erentiable at the point* $x_0 = 0$

1.4.1 Operations on diff**erentiable functions**

Let *f*, *g* : *I* → **R** be two differentiable functions in x_0 and let $\lambda \in \mathbb{R}$, then

$$
\mathbf{O}\left(\lambda f\right)'(x_0)=\lambda f'(x_0)
$$

$$
\bullet \ \left(f \pm g \right)'(x_0) = f'(x_0) \pm g'(x_0)
$$

$$
\mathbf{\Theta}\left(f.g\right)'(x_0) = f'(x_0).g(x_0) + f(x_0).g'(x_0)
$$

• If
$$
g(x_0) \neq 0
$$
 then $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0).g(x_0) - f(x_0).g'(x_0)}{g^2(x_0)}$

❺ Derivative of a composite functions: let *f* : *I* −→ R and *g* : *J* −→ R or *f*(*I*) ⊂ *J* if *f* is differentiable at x_0 and *g* is differentiable at the point $f'(x_0)$ then the composition *g* ◦ *f* is differentiable at x_0 and we have

$$
(g \circ f)'(x_0) = f'(x_0)g'(f(x_0))
$$

1.4.2 Derivatives of usual functions

1.4.3 Fundamental theorems of diff**erentiable functions**

Theorem 1.4.1. *(Rolle's theorem) Let* $f : [a, b] \longrightarrow \mathbb{R}$ *be a function which verifies* ❶ *f is continuous on* [*a*, *b*] ❷ *f is di*ff*erentiable on*]*a*, *b*[Θ $f(a) = f(b)$ *then there exists c* \in *[a, b*[*such that f'*(*c*) = 0

Theorem 1.4.2. *(Mean value theorem)*

Let $f : [a, b] \longrightarrow \mathbb{R}$ *be a function which verifies*

❶ *f is continuous on* [*a*, *b*]

❷ *f is di*ff*erentiable on*]*a*, *b*[

then there exists at least one point c \in *[a, b*[*such that f'*(*c*) = *f*(*b*) − *f*(*a*) *b* − *a*

1.4.4 Application of the derivative to the study of monotonicity

1.4.5 Application of the derivative to the calculate the limits

Theorem 1.4.4. *(Hopital's rule)*

Let f, g be two defined and differentiable functions in a neighborhood v of x_0 *such that*

①
$$
g(x) \neq 0
$$
, $g'(x) \neq 0$ on v .

$$
f(x_0) = g(x_0) = 0.
$$

 $\iint \lim_{x \to x_0}$ *f* ′ (*x*) $\overline{g'(x)}$ *exists finite or infinite, then*

$$
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}
$$

This result applies to indeterminate forms $\left(\frac{0}{\alpha}\right)$ $\boldsymbol{0}$ or ∞ ∞ λ

Example 1.4.2. *.*

$$
\bullet \lim_{x \to +\infty} \frac{x^2}{e^x} = \frac{\infty}{\infty} (IF), according to the Hopital's rule
$$

$$
\lim_{x \to +\infty} \frac{x^2}{e^x} = \lim_{x \to +\infty} \frac{2x}{e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0.
$$

$$
\text{② } \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0} = (IF), according to the Hopital's rule
$$

$$
\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{2x}{1} = 2.
$$

1.4.6 Maximum, minimum (extremum)

Let *f* : *I* $\longrightarrow \mathbb{R}$ and let $x_0 \in I$

 \bullet We say that *f* admits a local maximum at x_0 if

∃*J* ⊂ *I* of center *x*0, ∀*x* ∈ *J f*(*x*) ≤ *f*(*x*0)

 \bullet We say that *f* admits a local minimum at x_0 if

$$
\exists J \subset I \text{ of center } x_0, \forall x \in J \quad f(x) \ge f(x_0)
$$

- \bullet We say that *f* admits a local extremum at x_0 if *f* admits at x_0 a local maximum or minimum
- \bullet If *f* is differentiable at x_0 and $f'(x_0) = 0$, then x_0 is called the critical point of *f*.
- \bullet If $f'(x_0) = 0$ and $f''(x_0) \neq 0$, then f admits an extremum at x_0 (maximum if $f''(x_0) < 0$ and minimum if $f''(x_0) > 0$).

Example 1.4.3. *.*

 $f(x) = x^2 - 1$ *- The critical points We have*

$$
f'(x)=2x
$$

So

$$
f'(x) = 0 \Longleftrightarrow 2x = 0 \Longleftrightarrow x = 0
$$
 is a critical point of f

- The nature of critical points

 $f''(x) = 2 \neq 0$ *therefore f admits a minimum at the point* $x_0 = 0$ *because* $f''(0) > 0$ *.*

❷ $f(x) = x^2 e^{-x}$

- The critical points

we have

$$
f'(x) = xe^{-x}(2-x)
$$

So

$$
f'(x) = 0 \Longleftrightarrow xe^{-x}(2 - x) = 0 \Longleftrightarrow x = 0 \text{ or } x = 2
$$

- The nature of critical points

We have

$$
f''(x) = e^{-x}(1-x)(2-x) - xe^{-x}
$$

for $x = 0$, $f''(0) = 2 > 0$ *so* $x = 0$ *is a minimum. for* $x = 2$, $f''(2) = -2e^{-2} < 0$ *so* $x = 2$ *is a maximum.*

1.5 Integrals and primitives

Integration is linked to the problem of calculating a surface *A* delimited by the curve of a function *f* defined on a segment $[a, b]$ and the lines $x = a$, $x = b$ and $y = 0$

0 If *f* is positive then $A = \int_a^b f(x)dx$

❷ If *f* is negative then −*f* is positive and the curves *C^f* and *C*[−]*^f* are symmetrical about the x-axis $A = \int_a^b -f(x)dx$

❸ Surface between two curves

$$
A = \int_{a}^{b} (f - g)(x)dx \quad \text{si } f > g
$$
\n
$$
A = \int_{a}^{b} (g - f)(x)dx \quad \text{si } f < g
$$

Definition 1.5.1. *.*

We call the primitive of a function f : $[a, b] \longrightarrow \mathbb{R}$ *, any differentiable function* F : $[a, b] \longrightarrow \mathbb{R}$ *such that*

$$
F'(x) = f(x), \quad \forall x \in [a, b]
$$

Theorem 1.5.1. *If a function f admits an primitive F on* [*a*, *b*] *then the set*

$$
\left\{F+c,\ c\in\mathbb{R}\right\}
$$

is the set of all primitives of f on [*a*, *b*]

Example 1.5.1. *.*

- **●** $f(x) = 2x + 1 \implies F(x) = x^2 + x + c$ where *c* is a constant
- \bullet $f(x) = x^2 + \cos(x) \Longrightarrow F(x) = \frac{x^3}{3}$ $\frac{\partial^2}{\partial 3}$ + sin(x) + *c* where c is a constant.

Theorem 1.5.2. *Every continuous function on* [*a*, *b*] *admits a primitive on* [*a*, *b*]

Remark 1.5.1. *.*

The set of all primitives of the function f : [*a*, *b*] −→ R *is called the indefinite integral of f and denoted by* $\int f(x) dx$

$$
\int f(x)dx = F + c, \quad c \in \mathbb{R}
$$

Example 1.5.2. *.*

$$
\int \sin(x)dx = -\cos(x) + c, \quad c \in \mathbb{R}
$$

Definition 1.5.2. *.*

Let f be a continuous function on [*a*, *b*] *and F one of its primitives. We call the integral of f between a and b the quantity*

$$
\int_a^b f(x)dx = \left[F(x) \right]_a^b = F(b) - F(a)
$$

Example 1.5.3. *.*

Using the primitives, we obtain

$$
\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}
$$

1.5.1 Properties of the integral

Chasles relation

Let *f* : $[a, b]$ → **R** be a continuous function and let *c* ∈ $[a, b]$, then

$$
\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx
$$

 $\int_{a}^{a} f(x)dx = 0$ and $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$

Linearity of the integral

Let *f*, *g* be two continuous functions on [a , b] and α , $\beta \in \mathbb{R}$, then

$$
\int_a^b \alpha f(x) + \beta g(x) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx
$$

Positivity of the integral

Let f : $[a, b] \longrightarrow \mathbb{R}$ be a continuous function, then

$$
f
$$
 is positive \Longrightarrow $\int_a^b f(x)dx \ge 0$

Increasing of the Integral

Let f , g be two continuous functions on $[a, b]$, then

$$
f(x) \le g(x) \Longrightarrow \int_a^b f(x)dx \le \int_a^b g(x)dx
$$

Remark 1.5.2. *.*

$$
\int_a^b f(x)g(x)dx \neq \int_a^b f(x)dx \int_a^b g(x)dx
$$

and

$$
\left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx
$$

1.5.2 Integration methods

Direct integration

Table of usual primitives

Integration by parts

Let *f* and *g* be two differentiable functions on $[a, b]$, then we have

$$
\int_a^b f'(x)g(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f(x)g'(x)dx
$$

This result is a direct consequence of the derivative of the product of two functions.

Example 1.5.4. *.*

Calculate $\int_0^1 xe^x dx$ *We pose*

$$
\begin{cases}\nf(x) = x & f'(x) = 1 \\
g'(x) = e^x & g(x) = e^x\n\end{cases}
$$

then

$$
\int_0^1 xe^x dx = \left[xe^x \right]_0^1 - \int_0^1 e^x dx = e - \left[e^x \right]_0^1 = 1
$$

Change of variable

Let f be a continuous function on $[a, b]$ and g' exists and continuous. This method consists of putting $x = g(t)$ in the integral and replacing dx by $g'(t)dt$

$$
\int_{g(a)}^{g(b)} f(x)dx = \int_a^b f(g(t)) g'(t)dt
$$

Example 1.5.5. *.*

 $Calculate \int_1^4$ 1 *x* + √ *x dx by the change of variable t* = √ $\overline{x} \implies x = t^2 \implies dx = 2tdt$

$$
\begin{cases}\nSi \ x = 1 & t = 1 \\
Si \ x = 4 & t = 2\n\end{cases}
$$

thus

$$
\int_{1}^{4} \frac{1}{x + \sqrt{x}} dx = \int_{1}^{2} \frac{2t}{t^{2} + t} dt = 2 \left[\ln|t + 1| \right]_{1}^{2} = 2 \ln \frac{3}{2}
$$

Proposition 1.5.1. *Let f be a continuous function on* [*a*, *b*]*, then*

❶ *If f is a even function, then*

$$
\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx
$$

❷ *If f is an odd function, then*

$$
\int_{-a}^{a} f(x)dx = 0
$$

1.5.3 Opérations et primitives

