
Chapter 04 :

Part 01:

Boolean Algebra

Introduction: Boole Algebra

• Boolean algebra (named after George Boole, 1815 -
1864) is a mathematical theory that proposes to
translate electrical signals (in two states) into
mathematical expressions. It is a means of designing
electronic circuits that perform complex operations,
where elementary signals are defined by logical
variables and their processing is governed by logical
functions. Methods such as truth tables are used to
define the desired operations and to transcribe the
result into an algebraic expression.

• Introduction

• Today, Boolean algebra finds numerous applications
in computer science and the design of digital
electronic circuits, such as memories, computing
circuits, microprocessors, etc.

• Digital machines are composed of a set of electronic
circuits, each providing a well-defined
logical function (addition, comparison, etc.).

Introduction: Boole Algebra

• We signify by B the set consisting of two elements called
truth values TRUE and FALSE. This set is also
represented as B = {1, 0}. On this set, two operations can
be defined: AND and OR, and a transformation called
complement, inversion, or negation.

• The function F(A, B) could be the sum of A and B, or the
result of the comparison of A and B, or another function.

Boole Algebra

• To design and implement this circuit, a
mathematical model of the function performed
by the circuit is obligatory.
• This model must take into account the binary
system.
• The mathematical model used is that of
Boolean algebra.

Boole Algebra

• Examples of two-state systems:
• A switch is either open or not open (closed).
• A lamp is either on or not on (off).
• A door is either open or not open (closed).

• Note: The following conventions can be used:
• YES TRUE (true)
• NO FALSE (false)
• YES 1 (High Level)
• NO 0 (Low Level)

Boole Algebra

• Definitions and Conventions Logical Level:

When studying a logical system, it is essential to specify the
level of operation.

Example:

Positive Logic: Lamp on: 1, (L. Posi: 1)

Negative Logic: Lamp off: 0, (L. Neg: 0)

Level Positive Logic Negative Logic

H (Hight) 1 0

L (Low) 0 1

Boole Algebra

Logical operators of Boolean algebra

• Definition:

• We denote by B the set consisting of two elements
called truth values {TRUE, FALSE}.

• This set is also represented as B = {1, 0}. On this set,
two laws (operations or functions) can be defined:

• AND and OR, and a transformation called NOT,
complement, inversion, or negation.

• These operations are referred to as the basic logical
operations.

Basic logical operators

• NOT: (Negation): is a unary operator (operates on a
single variable) that serves to reverse the value of a
variable. The opposite of a variable "A" is TRUE if
and only if A is FALSE.

• The negation of A is denoted :

Ā (read as: A bar).

F(A) = NOT A = Ā

A Ā

0 1

1 0

• (AND) operator:
• The AND operator is a binary operator (two variables)
that aims to perform the logical product between two
Boolean variables.
• AND performs the conjunction
between two variables.
• The AND operator is defined
• by: F(A,B)= A . B

Basic logical operators

• (OR) operator

•The OR operator is a binary operator (two variables)
that aims to perform the logical sum between two
Boolean variables. OR performs

the disjunction between two

variables. The OR operator

is defined as: F(A,B)=A+B

(it should not be confused with

arithmetic addition).

Basic logical operators

• Notes:

• In the definition of the AND, OR operators, we have
delivered the basic definition with two logical variables.

• The AND operator can perform the product of multiple
logical variables (e.g., A . B . C . D).

• The OR operator can also perform the logical sum of
multiple logical variables (e.g., A + B + C + D).

• In an expression, parentheses can also be used.

Basic logical operators

Other logical operators

• The NOT-AND operator (NAND abbreviation)
associates a result that has the value TRUE only if at
least one of the two operands has the value FALSE. It is
defined as follows:

Or:

The NOT-OR operator (NOR Abbreviation) associates a
result that has the value TRUE only if both operands have
the value FALSE. It is defined as follows:

Other logical operators

• The exclusive OR operator, often called XOR
(eXclusive OR), associates a result that has the value
TRUE only if the two operands have distinct values. It
is defined as follows: F(A,B)=A B
 A B=Ā.B+A. B̅

Other logical operators

• Note: It can be noted that:
• A non XOR B is denoted as A B and read as:
A XNOR B. The AND operator can perform the logical
product of multiple variables (e.g., A . B . C . D). The
OR operator can also perform the logical sum of
multiple logical variables (e.g., A + B + C + D). In an
expression, parentheses can also be used. The gates
AND, OR, NAND, NOR can have more than two
inputs. There is no exclusive OR with more than two
inputs.

Other logical operators

logic Gates

• A logic gate is a fundamental electronic circuit that
enables the implementation of a basic logical operator
function.

Note: The AND, OR, NAND, NOR gates can have
more than two inputs. There is no exclusive OR (XOR)
with more than two inputs.

logic Gates

Fundamental laws of Boolean algebra

• Properties of the “OR” operator:

 a + 1 = 1 Absorbing element

 a + 0 = a Neutral element

 a + a = a Idempotence

 a + ā = 1 Complementarity

 a + b = b + a Commutativity

 a + b + c = (a + b) + c = a + (b + c)
Associativity

Fundamental laws of Boolean algebra

Properties of the “AND” operator:

 a * 0 = 0 Absorbing element

 a * 1 = a Neutral element

 a * a = a Idempotence

 a * ā = 0 Complementarity

 a * b = b * a Commutativity

 a * b * c = (a * b) * c = a * (b * c) Associativity

• Properties of the « NOT » operator:

 ¬ ā = a

 ā + a = 1

 ā * a = 0

• Distributive property:

 a * (b + c) = a * b + a * c

 (a + b) * (c + d) = a * c + a * d + b * c + b * d

 a + (b * c) = (a + b) * (a + c)

Fundamental laws of Boolean algebra

• Propriété de l'opérateur "NAND"

 A 0=1

 A 1=Ā

 A B=B A

 (A B) C A (B C)

• Propriété de l'opérateur "NOR"

 A 0= Ā

 A 1=0

 A B=B A

 (A B) C A (B C)

Fundamental laws of Boolean algebra

• Note 1:

• All these formulas allow for the simplification of logical
functions, meaning to eliminate logical operators as much
as possible (without, of course, altering the initial
function).

• Note 2:

• NAND and NOR are universal (complete) operators,
meaning that by using them, any logical function can be
expressed. To achieve this, it is sufficient to express the
basic operators (NOT, AND, OR) with NAND and NOR.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Exemple :

Implementation of basic operators using NOR gates.

Fundamental laws of Boolean algebra

• Duality of Boolean algebra: Any logical expression
remains true if we replace: AND with OR, OR with AND,
1 with 0, and 0 with 1.

• Exemple :

Fundamental laws of Boolean algebra

• De Morgan's Theorem: The complemented logical
sum of two variables is equal to the logical product of
the complements of the two variables.

• The complemented logical product of two variables is
equal to the logical sum of the complements of the
two variables.

Fundamental laws of Boolean algebra

• Generalization of De Morgan's Theorem

to n variables.

Fundamental laws of Boolean algebra

• Exemple :

• Let S be simplified

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

• Exemple :
• Let S be simplified

• By distributivity

• By distributivity

• By Idempotence (x.x=x)

• By Complementarity y.y=0

• By remarkable identity (1.x=x)

• By distributivity

• By remarkable identity (on + then *)

Fundamental laws of Boolean algebra

Logic Circuit

Logic Circuit: Logigram (logic diagram)

• Concept of a Logic Circuit (Flowchart)

The connection established between Boolean algebra
and logic circuits dates back to the early 20th century. It
was a true revolution whose consequences we are well
aware of today.

• It initially involved an application to relay circuits
(a kind of buttons). If relays responded to the same
command (variable), then a logical function could
express its general operation:

• Examples of application to relay circuits:

Logic Circuit: Logigram (logic diagram)

Logic Circuit: Logigram (logic diagram)

Logic Circuit

A logic circuit is the translation of a logical function
into an electronic schematic.

The principle involves replacing each logical operator
with the corresponding logic gate.

Logic gates are the basic elements with which we can
express any logical function. The variables of a logical
function become the inputs of the circuit, and this
circuit outputs the value of the logical function based on
the input values.

• We can connect logic gates to each other to
implement a logical function. On the contrary,
finding the logical function implemented by a circuit
allows us to manipulate it for potential
simplifications.

• Exemple :

Logic Circuit

Logical function

 Function that connects N logical variables with a set of

basic logical operators. There are three basic operators:

NOT, AND, OR. The value of a logical function is equal to:

1 or 0 based on the values of the logical variables.

 If a logical function has N logical variables 2n

combinations the function has 2n values.

 The 2n combinations are represented in a table called a

truth table (TT),

• Example of a logical function

• The function has: 3 variables,

23 combinations

The truth table:

A table representing

the values taken by a Boolean

expression for each possible

combination of its inputs.

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Logical function

• Textual definition of a logical function

• Generally, the definition of how a system operates is
provided in textual format.

• Thus, to study and implement such a system, we must
have its mathematical model (logical function)

• → it is necessary to derive (deduce) the logical
function from the textual description.

Logical function

• Exemple :

 A security lock opens based on three keys.

 The operation of the lock is defined as follows:

 The lock is open if at least two keys are used.

 The lock remains closed in other cases.

• Provide the circuit diagram that controls the opening
of the lock.

Logical function

• The system has three inputs:

each input represents a key.

• We will correspond each key to a logical variable:
key1 → A, key2 → B, key3 → C

• If key1 is used, then variable A = 1, otherwise A = 0.

• If key2 is used, then variable B = 1, otherwise B = 0.

• If key3 is used, then variable C = 1, otherwise C = 0.

Logical function

• Le système possède une seule sortie qui correspond à
l’état de la serrure (ouverte ou fermé).

• On va correspondre une variable S pour designer la sortie

• S=1 si la serrure est ouverte,

• S=0 si elle est fermée ,

Logical function

• Thus, the truth table of the system will be as follows:
According to the truth table, we have:

• Then the corresponding circuit

is as follows:

Logical function

• Canonical Form of a Logical Function:

• The canonical form of a function is referred to as the
form where each term of the function includes all
variables.

• It is called canonical because it is unique for each
function (however, a canonical expression is not
necessarily optimal).

Logical function

• According to the duality principle essential to Boolean
algebra, two canonical forms are identified:

• 1- Sum of products (called disjunctive canonical form or
the sum of minterms). A sum of products is in canonical
form if all variables appear in all terms of the products
that compose it.

• 2- Product of sums (called conjunctive canonical form or
product of maxterms). A product of sums is in canonical
form if all variables appear in all terms of sums that
compose it.

Logical function

Logical function

• From this, we deduce the expression of F in disjunctive
canonical form (sum of minterms) and its condensed
representations:

• From this, we deduce the expression of F

in conjunctive canonical form (product of

maxterms) and its condensed representations:

Logical function

There is another representation of the canonical forms of a
logical function, and this representation is called the
numeric form.

R or Σ: to indicate the disjunctive form.

P or Π: to indicate the conjunctive form.

If we take the function from the previous example:

Logical function

Note:
We can always reduce any logical function to one of the
canonical forms. This involves adding the missing
variables in terms that do not contain all variables
(non-canonical terms), using the rules of Boolean
algebra:
• Multiply a term by an expression that equals 1.
• Add to a term an expression that equals 0.
• Subsequently, perform distribution.

Logical function

•The first and second canonical forms are equivalent.

It is possible to transition from a disjunctive canonical

expression to a conjunctive canonical expression (and

vice versa) by considering the missing terms in the dual.

Logical function

• Simplification of logical functions

• Why?

• To use the fewest possible components;

• To simplify the wiring diagram as much as possible by
reducing the number of logic gates used → reducing the
circuit cost.

• Therefore, it is necessary to find the minimal form of the
considered logical expression, and for that, we must:

 Reduce the number of terms in a function;

 Reduce the number of variables in a term.

Logical function

• Three methods:

1. Algebraic (using properties and theorems)

2. Graphic (Karnaugh maps; ...)

3. Programmable (Quine-McCluskey method)

• Algebraic Simplification This method does not have a
specific approach; its principle is to apply the rules of
Boolean algebra to eliminate variables or terms.

Logical function

Thus, this simplification technique relies on the use of
fundamental theorems and properties of Boolean algebra.

After finding the algebraic expression of the function, the
next step is to minimize the number of terms in a function to
obtain a smaller circuit, hence easier to construct with
reduced cost.

Algebraic simplification is based on various actions;
however, when the function is more complex (beyond three
variables), this simplification method becomes less
authentic.

Logical function

• Supprimer les associations de termes multiples.

• Mettre en facteur des variables pour éliminer plusieurs
termes.

• Mettre en facteur des variables pour faire apparaître des
termes inclus.

• Ajouter un terme qui existe déjà à une expression logique.

Logical function

• Eliminate associations of multiple terms.

• Factorize variables to eliminate multiple terms.

• Factorize variables to reveal included terms.

• Add a term that already exists to a logical expression.

Logical function

• Some fundamental rules:

• Rule 1: In a sum, all multiples of a fundamental term can
be eliminated. X + XY = X.

• Rule 2: (Absorption): In the sum of a term and a multiple
of its complement, the complement can be eliminated.

• Rule 3: Assembly terms using the rules of Boolean
algebra.

Logical function

• Rule 4: Add an existing term to an expression.

• Rule 5: It is possible to eliminate an unnecessary term (an
extra term), meaning it is already included in the union of
the other term

Logical function

• Rule 6: It is preferable to simplify the canonical form
using the minimum number of terms.

Logical function

Logical function

• Example 1: Simplify the following expression using
the rules of Boolean algebra.

Logical function

• Example 2: Simplify the following expression using
the rules of Boolean algebra.

Logical function

• Example 3: Simplify the following expression using
the rules of Boolean algebra.

Logical function

End of Part 01

of Chapter 04

