Exercise 5.1

Find the power series for the following functions:

$$
\begin{array}{cll}
f_{1}(x)=e^{x} & f_{2}(x)=\cos x & f_{3}(x)=\sin x \\
f_{4}(x)=\ln (x+1) & f_{5}(x)=\frac{1}{x-1} & f_{6}(x)=\frac{1}{x+1}
\end{array}
$$

Exercise 5.2

Find Taylor series (power series) of order $\mathrm{n}=3$ for the following functions about $x_{0}=0$.

$$
\begin{array}{ll}
f_{1}(x)=\sqrt{1+x} & f_{2}(x)=\frac{e^{x}-1-x}{x^{2}} \\
f_{3}(x)=\ln (2+x) & f_{4}(x)=\frac{e^{x}}{x+e^{x}}
\end{array}
$$

Exercise 5.3

Consider the following function defined on \mathbb{R} by:

$$
f(x)=\frac{1}{1+e^{x}}
$$

1. Find Taylor series (power series) of order $n=3$ about $x_{0}=0$ for the function $f(x)$.
2. We denote by (C) the representative curve of f Write the equation of the tangent line to (C) at the abscissa point $x_{0}=0$.
3. Prove that the tangent crosses the curve at 0 . Such a point is called the inflection point.

Power series of standard functions

e^{x}	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{4!}+\ldots+\frac{x^{n}}{n!}+x^{n} \varepsilon(x)$
$\operatorname{ch}(x)$	$1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+\frac{x^{2 n}}{(2 n)!}+x^{2 n+1} \varepsilon(x)$
$\operatorname{sh}(x)$	$x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+\frac{x^{2 n+1}}{(2 n+1)!}+x^{2 n+2} \varepsilon(x)$
$\cos (x)$	$1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+x^{2 n+1} \varepsilon(x)$
$\sin (x)$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+x^{2 n+2} \varepsilon(x)$
$\ln (x+1)$	$x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+(-1)^{n-1} \frac{x^{n}}{n}+x^{n} \varepsilon(x)$
$(1+x)^{\alpha}$	$1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\ldots+\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!} x^{n}+x^{n} \varepsilon(x)$
$\frac{1}{1+x}$	$1-x+x^{2}-x^{3}+\ldots+(-1)^{n} x^{n}+x^{n} \varepsilon(x)$
$\frac{1}{1-x}$	$1+x+x^{2}+x^{3}+\ldots+x^{n}+x^{n} \varepsilon(x)$
$\sqrt{1+x}$	$1+\frac{x}{2}-\frac{x^{2}}{8}+\ldots+(-1)^{n-1} \frac{1 \times 3 \times 5 \times \ldots \times(2 n-3)}{2 \times 4 \times 6 \times \ldots \times 2 n} x^{n}+x^{n} \varepsilon(x)$

