{ "cells": [ { "cell_type": "markdown", "id": "3960a901", "metadata": {}, "source": [ "# Centre Universitaire de Mila" ] }, { "cell_type": "markdown", "id": "c4568d4a", "metadata": {}, "source": [ "# Master 1 (STIC & I2A), Matière: Traitement d'images" ] }, { "cell_type": "markdown", "id": "a8bedc4a", "metadata": {}, "source": [ "# Travaux pratiques N° 7" ] }, { "cell_type": "markdown", "id": "c91f3f10", "metadata": {}, "source": [ "## 7.1 Objectifs" ] }, { "cell_type": "markdown", "id": "c6a3a70a", "metadata": {}, "source": [ "* Implanter trois (3) algorithmes de segmentation." ] }, { "cell_type": "markdown", "id": "f57e8c63", "metadata": {}, "source": [ "## 7.2 Enoncé" ] }, { "cell_type": "markdown", "id": "751221fd", "metadata": {}, "source": [ "Dans ce projet, vous devez implémenter trois (3) algorithmes de segmentation:" ] }, { "cell_type": "markdown", "id": "dd0f7ae7", "metadata": {}, "source": [ "### 1) Algorithme de seuillage d'Ostu" ] }, { "cell_type": "markdown", "id": "5ff21564", "metadata": {}, "source": [ "Programmer une fonction 'seg_otsu' qui prendra comme entrée une image à niveau de gris et donne en sortie une image binaire avec les régions segmentée, ainsi que le seuil obtenu.\r\n" ] }, { "cell_type": "code", "execution_count": 18, "id": "23178823-05f9-470c-a746-cd1ae9a05074", "metadata": {}, "outputs": [], "source": [ "import cv2 as cv\n", "import numpy as np\n", "from matplotlib import pyplot as plt" ] }, { "cell_type": "code", "execution_count": 19, "id": "5a56ffdd-c1b8-4861-a13e-5f327c643b0a", "metadata": {}, "outputs": [], "source": [ "def seg_otsu(img):\n", " ...\n", " ...\n", " ...\n", " ...\n", " ...\n", " return thresh" ] }, { "cell_type": "code", "execution_count": 20, "id": "bcbdd991", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "191\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAADkCAYAAAAFBSdEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACi0UlEQVR4nO29eZxkVXk+/lR17V29zD7DIgKyKCgqUQliRCAqKoriBgpGwxLjRkQl5EvQQCL5iiJ8RWJYVNw1iIpEEEWCCIwKiMoSEZABhGFmel9q6+r6/TG/58xTb59bS3f1MjPn+Xz609W37j33nHNvn/d9n3c5sVqtVkNAQEBAQEDATov4YncgICAgICAgYHERlIGAgICAgICdHEEZCAgICAgI2MkRlIGAgICAgICdHEEZCAgICAgI2MkRlIGAgICAgICdHEEZCAgICAgI2MkRlIGAgICAgICdHEEZCAgICAgI2MmRaPXEf/mXf2npPFvQMBaLeY91ArVaDbVaDV1dXYjH45ienkYsFsP09PS83ZP39bXpG2sn7jM9Pe1+ZgvOSTwe985FPB538xiPx925PKbg9bVaDYlEAl1dXahWq6jVau4+fA7T09Puu1qthmq1Oqux8PxqtYpqteruq/1pdG21WnVjYV84Lr47AJBKpRq2x/HxR8er7fJesVhszu+etv+JT3xiTm0tBjr5vxcQEDA7NJNNLSsDc+2AdkSF6WwXCi6QicS2ISSTSUxNTbmFc74WIV34KZD0fkuxwrNP8HV1dbn+x+NxJBIJJ2QpyFR54N+83qdYUPAD24SwCtByuYypqSn399TUlLtW582naPGnXSFLJUT/tmPgPLTanrbBY2yHcx2lNAYEBAQsNXRcGdCFTxUB+9kKmtncp6urC8lkEuVyuc7S03vNx0KswrGrqwuxWKxO2GgfFgI6p43GqwJehT8tWf5NBUsFMBWvrq6uhsyIKgD8rMxAIpHA1NSUO07lgj9R88a2y+UygK2KX7tzVKlUUKlU3HimpqaQSqW87EczqCLAeeC8LmWlMCBgMcB1pxHsGhqwsJg3ZkCpVBXOdhFth873MQq6uNNN0NXV1VCwzBU6Du0LBVsnlBHf/DXrj/7D2fuqItDV1eWEoP4kEgkkk8k6dwG/U6vXCjv9u1qtOsufQp9KwdTU1AxlYGpqqu7H0vDafjweRzqdRrVabYsViMfjjjXSd0R/67mN3D2NFC623ey8gIAdFclkEqlUCnvuuScSiQRe9rKXobe3F6tXr8YhhxwS+T8xMDCA2267Dffccw8ee+wxjI6OYsOGDUGhXkC0rAy0Q3kqjdpI27M+V11IFT5Lq9GCPN8vkPZVfc0qKDnu2SgE1r/eDBTcvJZQoc6+0fLPZDJ1LoFEIoFUKuWUAWUKtA0Lnst5VyagUqmgWCyiWq2iWCy6eSmVSo4JoLU+NTWFcrnsxkzBzfFR0FLJYL987hnffFPoT09PR7oZfHOoygH7oPfz3UtjB4JCELAzYMWKFTjppJNw/PHHI5/PY88993RrSKv/A69+9avd+jEyMoLvf//7eOihh/CFL3wBo6Oj8zyCgJaVAbWEfb+Jdi1ataKjrFpfO0qN6zkLoUlaX7EKEZ+1PN+IisFQ+p9Cn3+nUqk6t0AymUQymaxTAPjZWtAKnkPhTqufLoF4PI5KpeIEOlkDftb+61zRVaHBczzfKiZUvDh+fS/07yifvsJn2SeTSVQqFXcOXSUci17HPvK+2tegGATsSIjH49hnn31w4IEH4iMf+Qhe8pKXzPkdp3GxatUqnHLKKRgfH8f09DQeffRR3HPPPXj00Ufr4owCOoeWlQFdiNWPbKGsQDOr1vd9q4Fc1k9ulYP5hN5T2Q+NVG+kFDWbO36eTfaAsgEU+CrkLTOQSCSQTqdnKA3spwbYRdHnFHpUMrTvFJpq/TOIsFgsur+LxSJSqRQKhYJjCJQ5UuVAFRNlaKwLI0oh4LMCUGe50H3iy57QOaEiwx+9l33vlVHQ/gYEbI+Ix+N4xzvegUMOOQT9/f04+uij0d/fP2/vdT6fx6c+9SkAwODgIO644w489thjWL9+Pa6++moUCoV5ue/OiLZiBnwR5hY+4acR6I3Q7IXyBSdG3XM+EYvFkEwmHRWuQksRJdB9Co8G2c1GCaDAVno/nU47ZYCKAX9nMhmnJFC4WkocgBN2zaxpfTd0juh2SKfTbr7K5TKmp6cxMTGBYrGIUqnk0hM5D1RK6DbQuBDNjOCPFcD8zXmx/eX1ZC+mp6frXCRRbhEALmCV0Gev7yhjG6LuHxCwveFv//ZvcfHFFyObzS7YPfn/smLFCrzuda8DAJx22mk4/vjjcc455+DOO+9csL7syOhYAGE77gEfdOFtFLwVhUZBX/MBS837BHiUq6ARPQ1sm4sopcAKHgphpfaV9mcsgCoDDCCkMGS7NqqfAppj1AwAfWZWiKq1rcKd7bItDfhkbAH7QRcDmRcGHzZ6JlEsTFTcCRUhfrYKUlTbsVjM1S5gIKSNj7Eshc+N0QqC8hCwmOjp6UFfXx8++MEP4qSTTmpZEZiamsLw8DBqtRrGxsaQSqWQTqdnnBeLxbBs2bK20nu7urpw9NFHo6+vD8cffzwGBgYwMTHR8vUBM9GyMsBULl3QgHo6dmpqymtNNRJqluZtJFSbxSss1KLJwDcVeiroFJwPClFSyyo022EDfKyLTQukMpDL5ZxSkMvl6tII+TwpyKanp+sC+3icwrhWqzmL2Abi0aqmgkHlIx6PI5vNuv7QHcHCPplMxrkKkskkSqUSkskkisVinQtBgwobuaF0LvU9tG4ZBlJy/vhZx0CWgEqCshbVahXJZBLVatXND10gqsTo+zLXYMKFZr8CAgBg//33x9e//nU885nPxLJlyyLf4Yceegi/+tWvAGx932+99Vbn5ycjyLXHIh6P4wUveAGy2Sz+4i/+As985jOxyy674OUvf3nT/5lDDjkEd999Nx577DFcfPHF+OY3v+nSjxcbiUQCRx11FH73u9/hySefXOzuNEVbzIBdVK0/lIuVVrCLolC1DX6nfmZ7XxsB3urC2mgBncvizL5YKtsHK7g64T9WNkBTBSn8k8kkstms+6xxAeyTTedTfz39+qoQ0CqnYGR7tVrNuR0A1MUqlMtlZxFUq1WkUin3Pa+nEmLjFvjDjAO+U1RINNuCxyy9r0WhgG3KmQZUUnGhAmAzK/iMVSnhMbapcSucJ9s3+/xbgWUjAgIWArlcDueccw7e8pa3YK+99vKeU6vVsHHjRhQKBbzvfe/DjTfeOOv73XDDDQCA733vewC2xgpcdNFFeNOb3oRly5ZFXhePx7FixQqsWLECl112GcrlMq6++uo6ZXyh0dXVhTe96U3427/9Wxx++OG45JJLcPHFFwMAhoaGMD4+vmh9a4RYrUVz45xzztl2kSx8lhmY7ULXtKNCO6sgnss9Zru4+oLXfNSvRs2r0qOCi9e3C1sfgMpAOp12gr+7u9sJNfrsKag0oK9YLNYF9JVKJUxOTrp/KBWEqpRpKWIAjnlgrEIikXB9SKfTyOfzyGQy6O7uRjKZRCaTcQGHxWIRlUrF3XtychLj4+MuPZHKSalUcn3XbAQqClZZVVeAWiYMFNTYClVUbFqlPiPtR6lUcsoT+8XfWo2x1ffVwrqj9P9we0FQYrYvxGIxnHLKKbj00ku9lvzjjz+OW265Bb/4xS9wzTXXoFgsYnx8vOPMVTKZxB577IG//uu/xsknn4w999yzoWIAAMViEV/84hfxb//2bwtujedyOTz/+c/HBz7wAbzxjW90LhGusQDwxz/+Eaeffjpuu+22BWf6mt2vZWXg4x//+NYL5B+bFi+P0VpUv/BsOukTqjxug91m037UfVqFjpd/R7EeSu+q8PIFQ7baH40NsMpAd3e3Uway2az73NXV5YRYtVrFxMQEyuUyCoUCisUiCoUCRkdHHcXmiwHReVeLe3p6ekY1Q2CrwpLJZJzVnc1mkcvl0NfX55SDfD7v/mnoqmC/RkZGUC6XMTk5iYmJCdd/Clx+VqbCV02Q74ymSmochSoDOl+2IJEqvWRLWEdhamoKhULBKVhUVpq9I83AuWd//umf/qntNhYbQRnYvnDggQfi1ltvRX9//4zvHnjgAbzyla/Ek08+Oae9UtpFJpPB3nvvjf/6r//Cs5/97KbnP/jgg/jBD36Ac889d0Es8d7eXlx22WU49thjvXERik2bNuErX/kK/vEf/3FBqy42E/Utuwl81LYGRanF2+oAtZiMdrapBtMm++B7aWdjpRFaDIf9ieqzLuaagz4XVsDWD+BvugTUd8/gPApPWq2jo6NOo5+cnKwL3rOCj2AGhXWLkHHwBcfxuFYcjMfjKJVKdWmCmnlAq71cLrt3pFKpOEWTLiVVSHyxFGQyNPtAiyzpj1ZgZL/pvuC1ZA54Du/BWIpkMuktahQVT9Lqs+Y8tRNgFRDQLlatWoX3vOc9Lm2QqFQqWL9+PW655Rb86le/whNPPLHgfSsWi7jvvvtw5pln4rDDDsMJJ5yA3XbbLfL8fffdFx/+8Ifxu9/9Dl/72tfmtW9dXV14yUtegre85S2oVCq49957sX79emzcuBEA0N/fj2OPPRZr165FIpHA6tWrceqpp+KHP/whfv7zn89r39rBrLMJlOrW2vLW76+CT6PWNa4A2MYytMIStBuNrddqPzqBZv3Qe1GYsi9qNTaCzrX+VmFG90Amk0E6nXZW7/T0tLP8S6USCoUCCoUCxsbGMDk56axr9icqOA/YVvqZ47JBkOxnpVKpqxBIa5wBgZVKBel02n3u6elBT0+PE7QMeJyamnL+fADO4mYAH/utFrxPydL3RZUzjbnIZDKo1WqYnJxEsVjEyMiIUwZ4j76+PuRyOXR3dyObzdYpswwOTSQSdZszaT98Jax9z1qh/z/Bwg6YL8RiMbz73e/G+eefX/eePfbYY3jHO96Be++9F8PDw4vXwf8fP/zhD93PpZdeigMOOCByPe/q6sKnP/1plEol3HTTTRgcHOx4f3p6evDJT34STz75JM4++2zcdddduPXWW51hBWyd23//93/Hvvvui/e973045phj0Nvbi4985COYnJzEH/7wB4yNjXW8b+2iZTeBbwtjWmyAv049//blsfsyB9TqbARbI79RYCI/q/XeSWVgNlBB0Q4zYLMBKPT5mf74dDrtrOdqtYrx8XHHAPDz+Pg4yuWyszYZGW/ZC32e1urVZ8l+2dgOW9mQY4jFYshms+jr60Nvby+WL1+OXC7nMiCoPBSLRYyOjmJsbAylUglDQ0N1MQ6k7BlgaN8FVVp07wXGK6RSKeRyOXR1dWFkZARbtmzB+Pg4RkdH62JgYrEY8vk8ent7sWrVKqxevdpVJmTMAF0vdHXQZcBnrvUSGgl2/d9JpVLu+SSTSZx55pktvy9LBUGJWfp43vOeh5tvvhnLly93xyqVCk4++WR85StfWcSeRaO/vx9f+MIX8La3va3hedPT0/jSl76E0047reO0/PHHH4/3vOc9OProo1uqjNjb24uf//znOOigg1yWxV//9V8vCEPQMTdBFFSoWxeCWo66Gx6vUytZhY2mcEUNqhmDoOepMrDYCoHGU7SjCGj0uw0epCJAoQsApVLJWf1jY2NOoA4MDNQxAQxsYZ+AmeV+gXoL1Tf/qsgpHU8lgwoMA/T0ukqlgunpafT29qJWq7kAQ6Yg8j1g+iGwlTZkJoOySjqnVpnhOKigagDkxMQENmzYgKeeesoFMPK9oduCSkKpVEIsFkNfX59TXHTeOH5lwFpRAvic9XkwJXWuqYkBAT7kcjnsu+++OPHEE50iMDg4iK9+9au47bbb8P3vf39xO9gAw8PD+OAHP4hyuYyjjz4aK1eu9J4Xj8fx5je/GZdccgnuueeejvbhtttuw69//euWSySPjo7ine98J0444QSccsopWL58+ZL5v+7oroU2DUp/bHCXBmhx0dPiLVroxgpN67PXe7IfqmDY/s3F1dApqIul1fO1KA6FZSaTQTabdbS1WtTj4+MoFAoYGhrC0NAQJiYmUCgUvNa+ZXIaxW80ex5UAFR5YZwA2QwKPY3I138oWuwa0BePx1EoFGZsiUxFT6+3AtS6WTTQcWxsDIODg3jssccwMDDg3CpqyafTaVerYXJy0sViaLEUVdIoxPm5FTaAfaN7R2s8qNIRENApvOpVr8LXvvY1ZDIZAFtjZc455xx8/vOfX+SetYZNmzbhXe96F04++WR84QtfiDTy+vr6cNJJJ3VcGXjsscfavubee+/FP/3TP+GAAw7AEUccgZGRkY72abaYszJgWQEKOM0XV0vMKge8VhdpKxj0PmpZN/O9LnTqRitoFGwYBRVsatFqsSEKHga+UaCNj49jbGzMUdiqfLFtFZiNGBlfvwgqbarg2GekWw/zHWEcBZUXRvTrPFEYV6tVpNNpx3iQYfBlEPA6dVvY4kwU6HSfsA/MZtCYDgY+so3h4WGXHcG+6bNi21S0Wg2K1bnn8w4ImA+kUinsv//+yOVyALYqAhdccAEuv/zyRe5Ze6jVavjOd76Dv/qrv8Lb3vY2F+Br8cY3vhHf/e538ctf/nJJbHZ09dVXY8OGDbj33nsXuysAZrGFMYAZVKwuxHQJMJ2MCgAtQi5wKoTIBLBtpmV1dXU5P7YNULR98gnZqEwCRqJHUd/WJ66Bju2mAfpAYaxt+WIurBWrQp/7C3R3d9dt4kOBNj4+joGBAQwPDzvBpjQ+KXZlB/T+Oj+tuFS0gJHOE336nE+yBrrTYSaTQblcxsjIiFMEGVCYTqcRj8fdb8YJUECTHaBLQasA8rn5XCvKTAwPD2NgYAAjIyMYGhpywZbAtsqRLKDEIkksjZzNZutyn61i63tXolgpPgt1K/A5tKOkBQQ0Q39/P7785S/j1a9+NYCt/6ef+cxn8IlPfGLJVPBrByMjI3jPe96Du+66C6eddhr233//Gec885nPxA033IALLrgA55133qIbi1/96lfx7W9/e0koJkCbWxhb/yuhC5ut6EYFQCvU8Rh/1FLV6ne6oGrhHqA+dUz7p4K1EQWvfmiOySoXUZ/n8hJFWYlWOKhA0aA9zisFJeeawWojIyMYHR3FxMQEBgYG6ixcClpeowIHQJ2iYO/dDLY8r2/uSeWrwke3EJ/j+Pi4c1Pk83lUq9W6DIlcLucYDlL5WglR/7GsgmfBugaWPaECw35qYSXGD0xMTLj0TJ7De3JO2bdWXVLsK+dDYyv0+4CtUdxdXV1LIsJ9e8Rf/dVf4ZhjjnH/d9deey3OOeec7VIRICqVCi666CJUq1VcfPHF3v+5fD6P17/+9Tj//PMXtUohsZTme1bKgI9iVn+s5nLbUq9Avf+bFp5a4Rp8pVas3lsDxhqllmhfdSw+KF2ux1oJVmyGRj74ZlC3ChUBLZdLMOedwYMsiKNBdhQ0SqFrPj7n2zIErYyvVqshlUo5FoICVcfB+/F94j8DYwPIbnR1dWFiYqIuSFIVTL5bNq3VV3vAZkDoc7DXa1aEHtcMmEwm4xQe69KycTJRwZi++bNtRJ27M6Onpwd77LEHLrroIuy222644YYb8KUvfQkjIyN44oknloyVtZSRTCZx8sknu/fyqaeewr333rukBNNc8JOf/ATDw8OR1QpXrlyJfffdF/fff39QsAVtKQNAvVC1ixbpVy7s6XTaWVIamMbzNAhMtwQmBUvBVCqVEI/H6/LMbd+iUg2bBen5Mgys0IhiDFqFBjS2cp72WwW0KgEsKMQ54+Y+IyMj2LRpE4rFohNkzJf3uSNU6FPIqlVqq/DZMej7QEufLgC6eSg4bbAilYXp6WlXbZBsQLVaRXd3dx0bQtdIPp938RGM+uc9qMhExUSoQsIxUeEglLGiwOffuiER78t7Wf++Pkt9t2wAq75Tuosk2wgKwTYccMABuOiiizAwMIBbb70Vp5xyCk499VRMTU3h/e9//5JNg1tKOOCAA/DSl74UwNbSwkccccSsAuGWKh588EF87nOfwz//8z97/3f22GMP/M///A/e+9734uqrr16EHi5NzDqA0Fo81jerQW5qabHwjNLejIrXKHYAdQs8rVvdaMdafgq70DZSCHzCglC/ulp9s12g29FEfUFvahlz3NVq1dX0ZwohBZT68bVAjo5bN+RRpc43xij/tzI4tM7s81Rr3CoWTHFMpVLIZrMol8sYGxtzNQE0Op8Fh3S7YetK8TES2g9lJxgIyPaoIGj/7Xtk32u9h76bOt96f503oL7SoL6PwXKpx/r16/Hyl7/cvd+PPvoo3ve+92HdunU444wz8NOf/nS72CFusdDX14fzzz/fpRFef/31eOihhxa5V53F9PQ0Lr74YvzFX/wFXvOa13jPWblyJV772tfi2muv3WEYkbliVsn2uhCq8NBgN5tKOD4+jqeffhqPP/44HnroIfzhD3/Agw8+iIceegiPP/44RkdHUSgU6trX68ks6GYyVohbC9YniHQMFII2oFGhQV3qS253kbYxEnrcnmfnUAPJ2G+6X1grgDnwExMTTokqFAquGI8vWBGAK1jEeSXj4Jsz31isq0E3StJiSJohoBkPdnMklkau1WoolUoYGRlxKZIci+2z7tRoFRla8zY4T5XL7u5u9PX1oa+vD5lMpu5Hx0OFh/sr9PX1OcXDpsXaHRX1WVtlUoNCeX5QArYWaOnu7p5xnNkkU1NT+OQnP4lXvvKVuOiii7By5crtciOnhUIymcTFF1+MV73qVQCAyclJXHnllYvcq/nB4OAg/uZv/gbr16+PPOfNb36zN9BwZ0XbzIAGRQGoq+qm/mYKcVaHe+SRRzA4OOhSt9hOV1cXenp6UC6X0d/fj/7+fmedUdEg7aw52NZdob8bBY5p29Z/7KNkNYNBlQANgmy2cFtLj31Qd4e1JPlbrXVlBxigRlaAaYR0qeiuefR38z7VanUGc6NuAgrKqHE0Qyy2tVAPBbG+FxToAOriCrRfFNA8d2xsDP39/W4DEM6LukvUR2+fr8aX6LPk73Q6jf7+fqxcudLNJTc+4rbOAFzQZk9PD5YtW4bly5e7LAa25XND+N4rXwyLZWN2doVgdHS06Tm1Wg333nsv/uEf/gEXXXQRenp6FqBn2yf+8i//Em95y1vcOzY8PIw//elPi9yr+cPmzZvxn//5nzjkkEO83+fzebz4xS/G7373uwXu2dJEy8qA+kNVuClDQOtGo9WLxSKGhoawceNGl7ZFZYAWPgPGSqUSkskkent7nQDkvSkctSKbpYOtEOAxPU8FYyvwnTvX3G+rCAAz4xw0VkDdBZzb6emtRWlYYKhQKNSxAlHuAQpMWtcazwH4t6H2pchZQcV7cFyaOcA2dKMjVTg0pmByctKNmYWUGPFPZkhdS6rYUMFsJUZEY1jIaPT19bmgRbotdHvmfD6PVCqF/v5+tx2zKmWcX1Uu1SWiSoEGyOocB8weGzZsWOwuLGkcfvjhrqbAT3/6U5x33nnzUq9/KWHDhg0oFArIZrPe79esWbPAPVq6aHvXQv3bLma6ex6jwp966ik89dRTePLJJzEyMuJSsTRwMJVKoVwuY3h42LWjVqDeTxURtfh4zNLx+j0FUavpcgpSyp1YtBsxETYrwxcvQKWI1fsmJycxODjo6vdTGWC/gW3zx+s1fVCzEqz/W/uj/SfLoX56YFsGh7bBzxTifCapVMrtXqh0PpXD7u5upwxMTEwglUqhp6fH9ZvFfrLZrKtloGmUumGQfZYch87FmjVrkEqlMDo6ikwm49wTDGYkbb1mzRqsWLHCsRJUsFSpYR/sO8j5oLLL+d3ZWYCA+UUymcTBBx8MYOt7eemlly6pHfPmC7fccgtuvvnmyNiBk046CZdeeimGhoYWuGdLD22nFvooebU4NdiuWq1ibGzM0deFQgHFYrGuCI0Ku+npaQwODmLlypWRexn4Avh0oaWgoCXmSy1sB2zLRoPPBRr4Z6FKlkbR6w/HTj+1phECM+fDzpkvFkOVOrXmrRLGa/jbulpU+DIrRAUk2+V3hKYGMmJf91Cgu0kD/9gHrSio76Ivk0T7qe8r793X1+d2Hszlcq6WAZWBXC6HfD5fJ8jtXPC+fFfs+2IVAR4LCkHAfGGvvfbCEUccAWBrrMBvfvObRe7RwmB6ehoPPPAAjjrqKLfpl2LPPffEW97yFlx11VWu0NjOirZTCzXYzgoaFVKxWAwTExPYsmULBgcHXZQ7lQH1hzMQbHp6GqOjo5icnEQmk5kRgGXdALRCKcis0NGAMatAEI2CDIH6Wv26uOvibX9HRY/zsxZQinIPKNOiDArnlz90E2gBDWuNqpvFl/XBNtkfK6R0HnR8GoinY+Q9eI7uKEhaPx7fWk2QxYpsYSRutUwmg+8EU08pUOnuSKfTLj6B91U3llL1VAQ03VHp/unpaSSTSRckGIvF6naE1EBLG/3P+ec9Gb9h3QT23kEZCJgv7Lvvvvi7v/s75yIYHBzE5OTkIvdq4XD22Wdjv/32w+te97oZ3yWTSXzuc5/Dxo0bce211y5C75YO2i5HrAuqjfhnahTPKRaLmJiYQLFYdPvEU3jRKgPgtpMFtga1jIyMIJlMIpPJOLpfNy/iMV+wFr+zfbfuAd/C6xPQHBNpYFabs/SuWtPqf7fzFhXYCGxTtBicyJgK+sczmUxd9HqlUnF19TU2QoWrBiBqCifvz7oA6mtX948KMT1O8HkwDkAFr55LZUUZCD5z1kmo1Wou7RTYmm7Id4OugmKx6OoP+DJC2K4WA7IKH5+hxn7wOO8zPj6OTCaDnp6euu2hffUzlIGgu4PP3qZXcn50vjRlNiCg0zj11FNx+umnu7+/8Y1vYNOmTYvXoQVGsVjENddcg9e+9rXedZdxQDs72gogtP7kRtAKbWq16t8UDFqaVq0z3o+R8TYYS6PSufBaWIFtfd+KqKhua+n55sC6PXiNz1fsC3CLYlmUKaBgoaDTlDYVRlYRUGGpQtDXRzs3jRQBHZd+xzZVYVKBqXNFa16VCG55zA2DWIq4XC67d8fGVfgsbHUXWTZK+8v3SndQ5HG2SwZCd4u0bdgyzLw+lUrVKYbKYLX6/xQQMBvEYjG84AUvcH+Pjo7immuuWcQeLQ5uvfVWjI+PR2abHHXUUQtSsCqRSODVr341dt9997rjN954I/70pz953YoLhZaVAZ8QjBIOHBBryevCqYFiFBJaVlYtVlrz/M4GmqkyQKbCByvYfb5k2387FqsM+OZC8/OVotb+R8EG+mmWhgovCi3m5jM7w/r6bb9sTIcKd7ID+rfPVdAIVsnSvqgrwrpItGIgqxXyPCoD/Afmcd2x0KdA2XnWTaH4DPmjFS3JTMTjcfT29iKZTKK7uxs9PT3uN5W9bDZbZ83zubAWRblcnpH5wfN8KaVkK4JyENBJ9Pb2Yu3ate7va6+9dqeJF1DQ7RilDETtdNgJdHV14Z3vfCfWrVuHo446CoceeuiM7IYNGzbg8ccfx+DgIC699FLcfPPNC14Mqa2YgSjLWaFuhGQyiZ6eHkxOTtbRufT1AzN95gyY46JKK5tta+68HmMfW0n7i1IEoixlFaL82/adwl/pX5/12QxqhWsxHQ061Nr/ygpwPghbP0AVDJ7rC6gDtsV9aMCiD5YC1zmg4OW9y+VyXcxELBZzY9PiSBTQOj6yIgwiVGWG7ICtm8C+qFtH4xyoWGq6Kv2qjENgwGA2m3VuglQqNWO3SAr8qakp5wZTdxHnVFksrRJJ2HicRkprQEAz9Pf3Oyu0Uqng8ssv9wYu7+h46qmncP/992P16tXe7/fYYw9ks1lX+K5TiMfjeNGLXoTPfe5zDWtg7LHHHthjjz0AAK961atw4YUX4hMLvINkW8qADZxTcEHkAkl6tLe3F8ViEfl83kW8c0GnkEmn08jn81i+fDny+bwTSloTnoLCpmvpi92qMhAFa/HbeACOywYSqh+YgscGM/Ja7auikYJlYyP4d7lcxuTkZJ2w0cA0HyzToeNk2zYQsFGcha+fFJjWtaNphzp3KtxVCGpWAQU2Ba6yC9aVwmwAzUZQRoi/qZyo26Kvrw8AnCugu7vbsVvd3d11bgIqKOyrZkhQMYrH4+4fmn1h+qfOmX0GAQGdRiKRwLOf/eydIqXQQo05H/bcc8+OKwPPetaz8PGPfxxHHnlkW8Ww0uk0PvrRjyKRSOAb3/gG7rvvvgXZYbGtqCWljX1CWi1LLtIrVqxAMplEqVRCJpPBli1b3KLJxbKnpwe77rorVq9eXRfIQUuQUIZAF+FOLp4UDjpeQl0dNkDOWtnqJ7cLvbZjoX5+GzvA32qJsuIgFaNarVZXBZLtaOodr2/UF95XFTLth55n58kG1emcWvaEbaowp7LIUsusRQCg7jve20b1a6wA++OLA1FFANi2R4Nmb7C2ANkAu1ukvQ8ZHXVz8Bnp2PV/R8fuY20CAmaLZcuWuXe1VCrtlC4CYFulSqZXzjdWrlyJb33rW662Q7tIJBL4yEc+gg9+8IM466yz8NnPfrbDPfTcc7YX2iA+Pa4LfzabRVdXF1auXFnnS6e1lEgkXCnY3t5eF2FOQW8zAPTHxhlYQaWLdKuwzIAvkLDVNqLmiOeou0EFgqWKdQ60zDD9543uD2zLUtC4A56ntLkVjlEKgMI3PmVu9B72GKFj1iBAPl9lPDRSX8ca9RxsrIv2wcaA0KWSTCaRzWbr0gmZ1cDywzZrQ+eqVqu5bAMAde6ESqWCZDLp3CL6TpFZss8vMAUBs8XRRx/tXF933HEHfv/73y9yjxYPC7Uh0zOf+Ux89rOfxQtf+MI5tROLxZBOp/GBD3wA3/rWt/DUU091qId+zEoZ0IVdaXpaayp8+Pfq1auRy+WwbNkyjI+PO6HGhZd+WV1sVRjrPe0iqbS4tezbsa5aWXS1rkHU3PiEbNS9VJHRuQPqN1NSAUTBQyq8kXtB++E7z8Ze2KwBtqHPxN7DNx9WSVGFh2PjO6DKgcYdEFR+NI7AKmr2XrTwVaHQsdr3S7MSWAGT7yPZABbRYjpnuVx2c6ZBhepGyOVydbESANw58XjcFTrRzZQ03iAoAgFzwWGHHeY+r1+/vuM+8e0Jmzdvdgr3fCGVSuHjH/84jj32WO/3GzZscArZPffcgwMPPBCpVAoHHnggli1b5nUn7Lnnnrjyyivxb//2b7jtttvmre+zUgasD1195GohkTIF4DIKstks+vv73eKuEdkarKbCSwWQUvE8hxHe8fi2vQvmuoha+pfH1MdtoUGRPM9a3D7q3KcI6Bh5DoAZilYjZYcCSOlpa3lq4CCZGJvJYJkCCzvXli3w9VEZDrXM+c9qr6fSoCmoUQoBj/tcK9quuic4bo0J4G6F7Nfw8DAGBwcxNDSE4eFht3sesC3upbu7G6tXr8aqVavctZlMBrVazcUK8H0lM8H/Ec1ssEpZQMBcccwxx+CCCy7YaUvv3nnnnSiVSo4pmQ+8+MUvxvHHHz/j+NjYGC6++GL8x3/8h3eL7RUrVmDVqlW4/PLL6xQ44uijj8aWLVtwxx13zFtQ8azdBEq1qsVlhbX12/IzF3hLWdtF3lLK6mel0LL+Yu0j0apyYH3o1v+t8AV90QpVn3LUdVHxCVYJUneDWvuNxqTzpMLWN5eWlteAPipb2jdfG75787OdO7XUVckBUMcUWBeDBghGVe2jUmNz/m2/AdQpATpWuzPk+Pg4JiYm8Oc//xmDg4MYGRlxWy3TolcFYmJiApVKBf39/W6bY7IB3EuB92dMzNTUlNvTQ5+B710JCGgV3HALANatW4c1a9bstMrAC1/4QrfnzXxh9913r7vH+Pg4br31Vpx99tn47W9/G5nJMTAwgIGBAZxwwgn4+Mc/jte85jVYt25d3Tmvf/3r8apXvQrXX3/9vPR9TmXPVKDTquJizAXbR+1rjrgNCqRwsBaSCgVbVMcukuqzbpYap0LIBgjaBdjSS1bg2vuzjwqftUdhocqS3U6YPmZW4ePv6emtW/Dynz6KbVClRtkGPgMVrCqMSOfrM7DzblMbfQqAzo1+x3sre2GzEFRpVGZEqyZaZUzH6KuuaJkf9oPbFJPGr1ar+POf/4xNmzbhscceQ6FQwOTkJMbGxuraSKVSyOVyThkYGRnB2rVrsc8++yCbzaJWqzn3A+sQaN/o0lB3Qa22tYqnVcgCAlrFV77yFRxzzDF4+umnceKJJ+KPf/zjYndp0bBmzZpIFwHX0tkimUzijW98I9773ve6Y9PT0zj11FPxve99r04pa4THH38cJ598Mg488EDccsstWL58ufuur68P7373u3HjjTfOS3ronFYYtV7UL61R9FzMdUEH6i01K4hUmExPT9dZgdZS8gl6ZR4oLH3nRdGwGhymQppt++IGVEjqd2rdNYOdE/bFVmBUS95ex77wWvY3SmliH+2zsP806hqx7hB+3+ifSWM6+H4ow+FTFu3cWIWElf1874e9VufFKnkaY5BOp50CWavVMDk5ic2bN2PLli0YHh526ZyFQqHuXpp1QaVieHgYo6OjAOBKTOu8aRyFdcnoXNl3KiCgVdxzzz0oFov4zW9+g1/96lc7ZY2BVvDkk0+2LLB9yGaz+NSnPuVqBQBbAxZvuummWbX7yCOP4Le//S1e8YpX1B23604nMecVRgUn/bn2s7Uc7Wff4HTxY3sqEKPAhVPp3kawrg3eRwvC0DdsAyZ5jSo+UeNpBhUONmCQwjmdTs9wg6jFbIW9VSyi+qX30R+gflMk3TmQbaoP396D7Vo/v42bsEJc3yllKOLxrdsWM8VPt3W2Wz1rRUXLPilrQ7++bj7E2ITx8XE88cQTePzxx7Fp0yYn3Lm1MdMGWQlyZGQEW7ZswZYtW/D000/jz3/+M5544gkMDQ05JoDuApY2trstarVIZYiCiyBgtqjVanjlK1+Jfffdd7G7sqh41rOeFfndXnvtNadYAsYXEU899RROPfXUWe8BMTk5iXe961342te+Vidzjj32WHzwgx+cF3fHnLnHKGvQ+rfpPrDCIKo9TSVTf7e26YNlJZoJZvWPs0/WR6/HrTuAv9VaVwuvHcVArV9a9Bo4V6vVnGao86oWZNSYyWZocB6tcEu1s9+2HgDn16Yoant2fqgE8BlawczPqtho1UGN8u/q6kI+n0d/f7+L8GfAn1YgtCyFLYPMvjKN1bo94vGtZYpHR0fx5JNPYtOmTSgWixgdHXUUv7pSbEwGyyqXSiVks1k3z/l8HgCcYqdxAlR8VPBbd0ZAQLvYuHEj7r//fjz22GN4+OGHF7s7i4ZYLIYDDzyw4TlzYd+49hAXXXQRbrnlllm3B2xzGeyxxx542cteBmBreenzzjsPP/rRj/Dggw/OqX2LOTED1oLUCH9+rxYesE3IN6OrNALcuhiA6IBAtT59QXP2XP1t+9qIBvcpNEq3N6LNoxZ3ZQd852pdARWSqkT4rlPmQy11VSRUqGlb+gzZht3Qx0dv2wBSG0fA+6hCowGMdj6pDFjBb4sEUUnwlV9mP2wsgjIFnHuNy+B8URGwG0PpPGkp5WKxiPHxcYyOjrr58imb2ledz6AEBMwV2WwWvb29+J//+R+Mj48vdncWDf39/dhtt90iv1+5cmXdNs/t4pBDDnH+/dtvvx1XXnnlrNqxKJVK+OUvf1l3rBPZcj7MiRmwC5ZSwfzewmdFWgXBKgG12tZiLbTkVGCpUmEFc7uTxsW80fe1Wm1GdH3UWH1QIaBCSNtQZUTHxCj0QqFQVy4X2JbXT6uWlrW9h3XbVKvVugI52j+fm4HuC1r9bFvPsUqQvV7ngt/7FEQKf+bs07qm4CcLRHqf9Lv2h8GPZECsQCaUxSADMzIygsHBQRSLRRc4qMqKKi1UzOLxbbUDpqe3ZiIMDw+7TVI0hiTqeev70QobFhAQhcnJSQwPD+O8884DAFx22WU7ZdzAHnvs0VAZSCQSOOecc/CmN70Jb33rW9suUHTHHXdg8+bN2G233XD55ZdjYGBgrl12WL9+/bzXRwA6EDPgC0rTLYnV2rb+fgpfSxGXSiVHtXJBtNHxUZSOLp6NqPpGx/S3r7/AzBx1n7/epyD4gsFsX6zFzrnjLnoUeLSILTvA79iWZTFsRL3v2VgLttF5Nj7E0vGtKkrsp/r+Kfi5aVA2m3X+ds0qsFkGvh9rgdtxUFkol8vup1QqubLCxWLRbaOs77a+71qGuFgsuh/d0dAGdEa5AjSw0dKQAQGtoFwu46677sKKFSvwf//v/23oN9+R8Zd/+ZdNrf5kMonnP//5OOaYY9puv1AoOEZww4YNs+2mF3fddRcmJyc72qYP85KvpJahDeKKOl/jCixN34wGbwXWKlWhbH3mzdr2Wb/t+JtsXxRq0dsAMh5jGmc2m0Uul3O75FGR0vYt9e6DjVXgeGwfVUnhdT5BFqVoRY3ZtsHxkhXgjoHcJ4DZIdSWbRCgZV0Yd2ItbM3OsO+Dda1Ya8rGPGhVRGVZ2DeeoyyIns80RsvItMs8BQQourq6XOBgJpPBUUcdhVKphEcffXRxO7ZAiMViOP300/H3f//3LZ//0Y9+FAMDA/jv//7vti384eFh3HfffbPpaiTI7vT09KBSqeDaa6/F008/3dF7AB1gBpqhmSCir5X+WJ8PWylcxgK0I3ytdaoWvcJa+Y2sWps+2K6bwBdrwLHyPAao0Qrm37lcDt3d3ejp6XEUeiaTmbGTnvWNR43fWra0YDV7wAo/vYdlY3xz0WiOfPEgDLLjFsJ9fX1YsWIF8vn8jCqM9LtrzIB+ttkGvoJQ9pmzTdZ68CkH1mVglQydK1UoarWaiz2wCoRVyLSfwU0Q0C6e/exn45BDDgGw1fK95JJL6nLhd3SsXbsWH/vYx9piRNatW4errroKf/M3fzOre3b6/3Tz5s2uPsQDDzyA97znPRgeHu7oPYB5Ygai0GySrGWu1rCCFlQ7UOFtLS5+p7S89kevaxSQ2Mj6te34LFS76KuwYT9ZGW9qagqpVArZbNZRSKTWdYtcbVPZAh2zRsbzXP6tQYo+WtsqAzpG3xxaf7kVmvybygAZASoFrOKnFjbnj/3V4kU+xcH2U+dFtyBOJpMzYhC0z3Z8+rzIUFAZUaXWpspapkD75ZvTgIBWwUqZikMPPdRtlrUjIxaL4YQTTsCaNWtmdf3+++/f8jxVKhX87ne/Q09Pj4sZ6iTuvvtuPP3007j11lvnVA+hETqiDPgsu2bnKDRzIKotzRtXupqLrGYxNINtx7o16G/nIs12Sc/zOx7Ttpr5daPmplbbGiTJQDe2U6lUHGVOBUKj6lktr1QqOUs2k8nURftzjKpc6Zj1mPZfha0yFJbZsEqMCrQoBUmVCEuZd3Vt3e1y+fLlWLNmDdauXYu+vj5ks1lMTU05HzxT/FgHQnP5tV0N7tN+2WJFVuin02ksW7YMGzduRLFYRCKRQLFYrFtcNSCQ86xbSPf29qKnp8f1k/1SxUHHzv5ad0xAwGywYcMGXHfddTjppJPcsQMPPBC77LJLx33bSw377bcfzjrrrFn//7z97W/HBRdc0FIKXywWw6pVq5DP5zv+/1qr1XDWWWc1DG7vBFpWBjR/nwsXhUQjNwDRaIJUqHPAVrhHUdIWViDxmBX4ag3aftJ/y0WfAtr6djVgTxfvVmGFJiseKjQgk4qBBsQxuK5cLjvlwAb0qVLA8bPvKtiVrSB4Le8XhSglzseuWNgMFDIefX19WLZsmYsTAIAtW7a4nQM5H7FYDJlMpk6psKl6WvdfWQOr/FAhosLV29uL3t5elEqlGcGrfDa8nz5/PptcLodMJuOUAMtoWFagkeIUENAuqtUq7rzzzjploKenBy9+8Yt3aGVg+fLluPTSS7FixQrv9zbN2ff/Zf+nG4Ep17vssgv6+vowMjIyu45HYL4VAaANZcBS1pp3DswMLmsFPuFOYWvP06I5rSyMlnK1VpaPqaDA54JNetfS5L77W+q/0X1mA1tvn1vmTk1NYXJy0tGB3KcgkUh4K0DqvhC+sbSi2DWDL6hQYV0kvIb9oxBdtmyZ2+FyYGAAw8PDrvhPoVDAxMSEE6SZTAa9vb3o7+/3Koz6fvGeuqUw+0QllIpVb28vVq9ejUql4koLs/YA+6+KMQDkcjn09fVh1apV6O7uRiaTmbEjp8Yd8P1mPwMCOok//OEPGB0dRW9vL4CtQu4d73gH1q9fj8cff3yRe9d5xGIxvPvd78bhhx9ed3xgYAB33HEHbr/9dtx6661uHdhll13w5je/Gccdd9ys9wApFov4x3/8R1xwwQV4wQtegMcee2yuw1hwtDVyFUa2MqD6bVuFz4rnoq0bCHVCoKqgj7K0bD9UWdHAvFbGoxT4bKHBZ7T86ROPxWJIp9OYnp5GoVDA+Pi4q9Ovv63QBbaVLo5KceyEQIoKetN7WrcQAyH7+/uxdu1arF27FrlcDqOjoy7Hn0rBxMQERkdH69IuV6xYgX322Qc9PT0zylBzvL5APb5jZBoouMk47L777i4taXx8HENDQxgbG5vhLmB8wLp167B27VqsWbMG/f39de4VZQIsQ9AusxQQ0Ap+8pOf4PTTT8fll1/u1tVjjjkGa9aswVFHHYWJiYlF7mFnsddee+HMM8+sW8fuvvtunHbaabjnnnu8VvYPf/hDDAwMtJx14MPtt9+O17/+9dttHYe2lAH1Lasy0Gko9c7gjVYj9qPOUQUgSuhZy342SogK2bkqMapUUHDQBaDxAdw6l0KFlDkVAk0vjHK3WGu+0Ty2Mi6e14j6pqKjrBLH1N3djVwuh1gs5izxUqmEoaEhDA0NoVgsYmhoCJVKBfF43AX6DQ4OupgDG9dg/7YMhVro3EWRba1atQqFQgGDg4N1zIIWNWIdhDVr1mDFihWuyJCyDq3srxEQ0EnUajX86Ec/wmOPPYY999wTwNb1dP/998e6devaLrCz1HHAAQc490ClUsHDDz+Mq6++GnfeeWfkNaVSCRdeeCGOOeYY7L777rO+dyeLDS00WlYGNFBOfbBqXVk/PRElWHyWkCoYtNTs9/YeKuCioN9p/EPUuT7LWdtopgSpIGx14afQ1zaoFDH9kkGM9OHHYjFXrz8ej2NiYsKxGKTRbflcn8ul0dxxHih47S6OrY5NMwbUX65Bdz09PVi5ciVWrlyJrq4utxkQ3QJDQ0MYGBhAoVBwGwABQD6fx/T0NPr7++sse2WzuG8B+0BBroGhOh5NRUyn09htt92cK2J4eLguSFPjA5YtW+YUA900yQZN6p4JyhywHxqbEKVUBQS0gqeffhqXXXYZPvnJT7r3qL+/Hx/4wAdwxhlnLIhPeiHwrGc9C6effrr73znrrLNwxRVXYGxsrOm1Dz/8MF75ylfimmuuwbOf/WyMjo7OKXJ/5cqVdcbDUkfLygAnRelWm8uuFHUjOj4Keq5u0gPMpJRnY1mp1R/1gFrpr6Wbbfv8rRvztAr6+TU4Ua1W5v4zuyAejyOTyaCnpwfVahWFQsHNP1MOC4VCHSvA9skwNIpaV5aDyoCyQlExHCr8oqxjjUPJZDKO6l+7di2WL1+OWKx+g6bh4WEMDAxgy5YtrhCH9qlWq2FwcBCZTAa5XM4FflLY0tq3z4r90nfXPufp6Wn09vYim82iv7/fVRzTipScD8YIqMJmq3Da3TF5D30OOl/tBDMFBPjwve99D2eeeSb6+/vdsZNPPhnf/va3cfvtty9exzqEZDKJL33pSzjssMPcsTVr1rQVzPe///u/+OY3v4lzzz0XV1555ZyKM73oRS/CzTffPG+pgJ1Gy8oABQgwc+8AteZ99HA7vmifkPf5n2cTYU2/bDuKhN5HhQPQmEq3/W2lb3ZjHd6Pc0uBSiFCQZ5MJpHL5VAul11ebDweR3d3t4s3YO4r+6SsC/d84D3VmmbftJ/NWB87xzof7LvdEIruAdYTIO3PFMpyuez2CCBLMDEx4RSaTCbjNlDieJWN4LiscgJsY7WiglfVhWGfKf8H9N3QEtF853S8qoCo+0L7p/MVNc8BAe3gj3/8I77//e/XFdPJ5XK48MIL8ba3vW27zy5Ys2YN1q1bV3eMbpF2cM0112BsbAxPPPHEnPpz/fXXz+n6hUbbAYTWiqSS0Kk9120bvgVcF9l2MVvKJqpojQ++oL1m52uthEqlglqtPj+egoHfl8vluh376F+nBV2r1dxWv8DWeWW9fc6hug94Lw20VKFux99s/m2Mhq/QDu+bTqfR39+PFStWYNddd0V/fz96e3vdPTdu3OiEP3cBHB8fd7uwJRIJTE5OuoJLVAqswqhuClVaLVtilR0+A1r71WoVyWSyztWh6ZqqCDDlSM/lu2GVAt7PKpPKqgQEzBbT09O4+OKL8aY3vcllFgDAS17yEnzrW9/CG9/4RmzcuHERezh79PX14eqrr8bee+8957buu+++jpcU3h7QljRVyw6As5TUeoliBFpVFLio6g9zvltNK+wk1E0BtB9A1yo7oOep4KDApouAx2gBA9v20mZufnd3t5uvfD7vavozVVKFy/T0tGtL0+UAzHgGjJbnj90gSAWifQ/shj4cL/cf6OnpcYwAaydw7wUAjhmgUjA5OekCC0nxsz37XgLbUjP1nbRuAN8Pv7NKhO6FoEWGLLuj8SzqXtP+8Dev5f+YKgUsqhQQMBf8/ve/x3/+53/OOP6Sl7wERx555CL0qDPYc889cdBBBy12N7ZrtG1ac2HiT1Q0OrBNkKoFaRdV27ZayFbY+FiDdqwlpV/bofBpgdt6A43Q7B7WItR5ZVyACgS1yO3eAWQRuKthf3+/q4TFbX/7+/td8R6bS0tBTeZAlQ/+zefhc5OooLOKBvurAXP8TAWmp6cHfX196OnpQS6Xc1X7stmsE+zsC3f/o0KhFD73bNACQ5aKV+vdPg/Ohe0z54KKBxkCZQx0zwN7X2UAfH2yCpr9/9D+BATMBdVqFRdddNEMX3gsFsPHPvYx7LXXXovTsTlg//33xxlnnIFMJrPYXdmu0bIyYK0qBRdGezxKiEfBKhW0RqMKQagy0OwezbY+joK1dO3f9kevi1IGooSB1tS3ig6L8ajQoLVMizEWizl2oK+vz6UbKg2vm/0o9UyBQ+HPY2xXrVmOD5hJZWs8AOl6buM7OTnp+ppIJFyFQRYXYqR+Pp+vK/hE4U4LmxsRUWHgdcuXL0dfX5/LDGj0/imVT4VCnw/HqwGHqrjZmBkbIEnhrUqGdRGwLX3+NragHVYtIKAVPPnkk/h//+//zcggeN7znocbbrgBb3jDGxapZ+0jFovhn//5n/HOd75zsbuy3aPtcku+6HnrMyVU6DXyt2vQmo2kplU628pQtq+z8btGKUFz6QcwU4lSH7cVDtbyZmAgLVMKT40RYE187nlAJYBR9tzQSBeFWm3bjnrqI9egRZuSqDENKgDJWqjSQSuaLEY+n0c+n3eBg3QVUNkB4JiNiYkJZDIZpFIplxYYj8fR19eH1atXY9WqVXVsAoWvpu0pbZ9IJOoCKclWcB70ndRxajs2qFaVuHZdSryXHmecCJW3gIBO4POf/zx23XVXnHHGGXXH99lnH3zmM5/Bvffei4cffniRetc69tprL7ziFa+I/J4Fw5hZFRCNliWsLlK+mAAV3Fw0dfGKSl+jgPNtvcvFcK6KADCzFnU71+mCP1eFgGNlOyp8VCnivZnuZl0UnCetTEjfNdPbVq5ciVwuh+HhYUxOTiIe37ZxTiaTwfj4eJ3v3VLlWr+flQ95TN8BVbSs+0PHnE6nXZGkTCaDVatWYfny5cjn81i9ejWWL1+OXC7n6HjGMuRyOey6665IJBIolUro7e1FsVh0uwr29vY6xoNKEd8dK7DV8qaio0yIVSB4jb6/1v2l7dr3nm3rfSjglVHQeyoCOxAwHyiXy/jUpz6FI488Es9//vPrvtt7771x44034pJLLsGll146L7vwdQL7778//uM//mNGBoHi4IMPxkc+8hF89rOfbanWwM6MWSkDwMy0OevPjPLN8ju26VMOrEKw2FHU09P1u/nNFVzgrVDlvVQ4KD1vrUMNLGO9AQb2KUvANqkdZ7NZLFu2zAnnkZERFAqFOkue/WLsAiPo4/G4qwppgyu1XyqESfWn02nkcjmnjHR3d6Onpwc9PT0uyJEKjk2J5C6Gu+yyC/L5vNt/QQMNdd8FqzhFuW30faNSSyibwblXRUCfjyoDUQG0yqbwt7orNC6E1/N4QECnsWnTJlx11VV4znOeU5deDGy1uC+44AIUi0VceeWVSy54ddWqVfjhD3+IZz3rWQ3PSyQSOOuss3DHHXfgJz/5yQL1bvtEy8qALnIa/Wy3FlbhRcHE76KgsQKWxu1kBsFc6H7r4+XvqOBIS/fquc1oZJ1nDWADZvrBKTy1LWYScP65C+Do6CgmJiZQq9VcMGF3dze6u7tdlD63B1aKXGMUCF/BId6fQpmMBusHZDIZF9OgWxTn83lkMpm6QLlKpYJCoTAj1qC3txe5XK6uiqL2SRkUa91bC57XkNWKiivxKaPKJlhGwKfYqbJMRUmFv2WFfGxBUAoCOo1LLrkEIyMj+PCHP4wDDzyw7ruuri586lOfwrHHHotPfvKT+PWvf70k6Pbdd98dl112Wcs1BD760Y/uEEWV5httMQNa0Q3YlsalC6P6VZX+91Vai7K2fS6JTmCubakiYNulAFE62J5jazHUajVnjVMw+FLTtLqjpgcSGvlOoURhzeA7FuYpl8uYnJzE2NgYyuWyo9l190MK3+npaccYUOgxRoH9p2DTWAX67Vn/gMoA0wYp0FeuXImenh4XA6BFg8rlslNOCoWCcx1ks1mvX90GNvI7/lYXBp8TsE2p0XGxHRtI6XsPoiL8Ldug7hUb/6HX2HfG3jcgoJOYmprCl770Jfz4xz/GTTfdhP3337/u+3w+j1e+8pV4xStegV/+8pf41re+hcsuu8wZJwuJF77whTjttNNw1FFHtZz18Jvf/AbXXXfdDrcZ03xgVgGE+uPzxdtqhPqdQsvuLmVYS9EGSRKqGPlglQllQ3RObRCblmaOEgh0GfAH2PYcqIhQaKfTacRiMYyMjLhYAQpu5v0zlS6VSrka/L57UxlIp9NO2HHjJDIPVBrj8bhLfSQjQb893RF0DZTLZRQKBacYcEx0VfhS8Owzs3EoNrhPGS59xureiFIIfEqAjZ/Q+ANtX90Z6gbw/R8oq7TY7rKAHRcbN27Epk2bZigDRDKZxGGHHYaXvOQlWLlyJT796U8vmIDt6upCf38/TjjhBJx66qktX1er1fD1r399TiWFdya05SZQ61CpVULpWWUILGyhF7av7SxlqIKjyozS6wql2vVvbUsVAmBbQSd+R2VAn4FvnliQSBUtzYcHUBd4x7Q/Wua1Ws1t+gNs3c3LFgvyWeHpdNql9GlAYzabdW6KXC7nfkjPF4tFVKtV97tarbrNiXhM51XZFV/AqrXY9VxfpD/nNSpINSoVVYWztmUVO57L8aoSrQpJMzdaCCIMmE9MT0/jwgsvRDKZxEEHHeSKfVkkk0mcffbZOProo/HHP/4RN910E+6++248+OCDHa3Bn06nsd9+++Hoo4/GS1/6UvzFX/wFVq1a1dK1xWIRn/70p3HPPffUxQmwpkmlUsHQ0FDH+rqjIFZrkXv88Ic/7BZMCir1nSusb1z/thZYI6p1qUAtRVt0xyfYfQFk/K3CTN0Eeq7645UtYK0BxgRof9Q9QEFMS183zdG+qy+9XC5jbGzMKRKktanwxWIxZ53bZ67R8bxOawGQBdDgRlr8tPoZNEh2gAWVdGxa4IcxDFRSVBADmPGZCgVTCS2jpfPjY4KsYhuPx+sCB+05VABUIdPvqJhoSWgf+6IupFqthn/8x3/0v6RLGEGJ2X6QzWbxhje8AV/72tdaDpoeHx/HV77yFZx77rnYvHnznBiseDyOVatW4eyzz8bf/M3fIJ/Pt3X92NgYrr76apx66qkz6iiceeaZOOOMM/D444/j9a9/Pf785z/Pup/bI5qJ+paVAd0WksVvXCOGNtcccBVYVhnQa4B6a2upQRf1qMUtysfLhZzCTAW4j03gnOnujxoDoOWAqVzYwEX67qk88JpYLFa3XS8F4NTUlCtgpAKWtQhs1L11FbFdZg7QHZHL5dy9KUAp6BkLQGZAgwcpJDVIUFkOnqfuEe0bocGX+lmfGftPV4fveagFr4qPlubmPagcccxsA5jpbtDnb5Viq2TWajWcddZZ2N4QlIHtC319fXjve9+LU089teUgvUqlguHhYfz2t7/F1NQURkdHccUVV+DBBx905xQKBQwODmLdunV1cmCvvfbCsccei3333ReJRALPe97zsGzZMrdONcPTTz+NgYEBXHXVVfjv//5vPPTQQ3XpkN3d3Vi5ciWKxSIOOuggPPnkk7j//vuXrKyZL3RMGfjwhz/sFkJd5ICZljAXOFpxVshHLYxLHRoB7qNtfcqAsif01XOelHa3lr2tbaCBg6zKyHNVWOo1tEyz2ayj8fVH70Eona4lhG3UvLoeOC/sl7Ib/F6FNjMW6A5gJUXrAmG/GIwYj8edtq9WuZbq1TnQmAz2nYGRdidIjokLkHXbsE0ruHUu9FlaFsjGghCMlWCbyiKwbe2nLRKzPSAoA9snnvGMZ+Caa67BwQcfPKvrNTUYAIaHh7FhwwYccMABdSwlA4vbwfT0NNavX4/vfe97+OY3v4nh4eHIGIajjz4ahx56KL70pS/hkUcemdVYdgQ0E/WzquZjG+XipQteqVRyVp2WbQW2LyXACkpdnJvBBoZFzRszBax1z2ts4KAVclZB4fVkaLRwEftj3RB6b+uX1yJEhN0zQl0bStFzXJoiqcoAsxVUoJMBUYVTSxzb+gu+aH9VXGwmBL/T+fX58vmMbNyB71lGBVeyLf5f6GZENo5EmSf9n9J3KCBgofDYY4/h1ltvxQtf+MJZvX9kJYmenh7svvvuc+5XrVbDbbfdhmOPPRaDg4NNz7/++uu3u+2EFwNtKwN20eMCqtZXLBbzbhrhiy/Y3mCDJluF+tN91iIws9ocLUOrDFAQ6jGbX8/fAOoC9Kh4sNwwhb91f2iaolrOStVrvzXqXgWmsgt0DzAoUXcdVAGtNQT0/QJQF7cQVevfjkH7qONU370Kbo3hUIEcFRvi+86exzaVBdA+2Gevzy8gYLFw7rnn4pFHHsHZZ5+N/v5+x1AuNGq1GoaGhnDVVVfh4Ycfxne+852WFIGA1tFWNoEueCrYSb+SCiYNDcCVE46yfLc3zGaBVsFisy/4XTKZrLNwedwXo6ABa7ZfPkuSQigWi6FUKrma/PSRkzngM1Oh5YMKMvaHCoJa7OoaoBLAAEH+9jEf7IO+czzGa/i3ZhLYPttdBrXfGhRp3R/2GSgaWeoq/KPGxOdv42p0jwS9V4tevICAjiMej2N0dBSXXXYZDj30UFxyySU47bTTcOKJJy5oP5544glccMEF+NGPfoSHH344/E/ME+ZU9F+tKf4di8VczIDNCdfrtheFQPup1ncUfDQ/QUFpi/YoPW3vp8yAKl/Wp61xAuy3avG1Wq0uXZFsgVr6SvX7hKLN/lBlwLqBqBD4th1WAexzu1g/vwbskRlQa5vX8F3jnNlsFmVO1EJXN5Z1OWj6on1mvmfv+5t9ZXwD/7buM6v8BGYgYDGw22674YMf/CDWrl2LWCyGsbExvOpVr8Kf//xnPPvZz8b4+LhbK1gK3RYDaxf8f08kEpicnMT09DR+//vf45prrsHPfvYz/OY3vwlKwDyj7b0JVHhw0ddNbuxCyUXc19b2AmvNE5q7r64Snqc+fRVQOkeWGrb3ifJFa90B+u8pEDVbQC1gW5SI57I/vgwGPr8ogaWxAZbZ0MqIOhc8z0bbc1zqt9fAQN7DKmQ2XZX3t+4Mn3C19LwPURa777jvN++tgZR00ZAhsX3QNsIiGLCQGBgYwD777INjjz0WlUoFP/vZz3D99dfjsssuwyWXXAIA2GOPPbDPPvvgpz/9KVKpFI477jgcfvjhALa+s89//vOxbNkyrF+/PrKE8bp167By5Ur813/9F26//XaMjo5i7dq1uOOOO1AsFrFp06YlUf54Z8GsmAH1uVJoWF+r7vSm12xv8O2NoCVsOQeAvziMzoNS2j6rnrDWZ5Sl7hNk9jlQaSNFTwGtgt9CWQYKLGvB2vurQqiKkI098CmVCuu/t2Ws22GVGlnW9plEIUrgt3OuZQE4P5pl41NIgiIQsBgoFAou6v6Xv/wl3vGOd2BychKFQsGd8+ijj+KWW25xf59//vk4//zzAWx9bw8++GDsvvvu+NGPfhS562FPTw9yuRw2bdoU3vMlgDnvDayWp92MZbbBdq1ABV4zy242aFRXQOlwG6yn1j/bsX3UrAS1ppX69glevTfhO183iiJVPzExURe1zwpj6se27WmAnhYWsv78qH77WARVAixbYoP5tHaAjr0Tz9oqTQsB7bfughg1nqAMBCw2vvGNb2BgYKCta2q1Gu68807ceeedDc8bGxsL2wovIcxZGQC2UaAqMIBt6WfA/KQTRgnIuUIFla9tCkcVajYfXC0+/rbWv7ZnrXmbRWDpcWVnGPxHQav+aZ6bSqVQrVYxNDSEYrGIFStWIJvNIh6Puz0CVHnTgjpsy8YF6HxZKJVulSodmw04VF++xhVoOV8buDhbMGiPcz8fPnq2TTbJutY0WyEgYKnge9/7HiYnJ7F27do6Bitgx8WcAwijrGaloOdLEeD926GOm0GVAJ/fXo/ZPH9ae7YMpvbXwtLpvvnT+6lgpZBUhUQVMPVPp9NpV+BmcnLSFSJKp9POf63XJRKJGYF1mqrXTMnxsQCWPWB7GlAY5RbwBfbpbz67VuFz1XTyPVLos9J+RrmMeE1gBQIWC7/4xS9wzz334POf/zyWL1+OLVu2LHaXAuYZs0ot1GNW4FOQcOFTynwuC61ayJY6b0UIWIHuC0SzhXl0QbbXUyBToGkUvl5nFQsNlFOhoNfYWAS9r/ZXWQFbnpjnA6jbhCiZTCKbzbq5VCHE8dMqp0UQi8XqKgkqlBXxvSPWPaIxBMo88EfZDI1b4Hm++dV72WcVBbat78Fc31P7zKkc8odpkdb1pP21n6PewYCA+cb4+DhOPfVUlMvlpufuvvvuOOKII/CDH/wAw8PD89+5gI6jrWwC32KpQlq/s4F1nVjIfD5q/S5qEfcJcsIGcUVFnCssHR+1vS/b91nR9rgdSxR9bJULAHVlidUCZxvcyZCV/7iLYDwed5sEUZmgANM5VSXFN06fQOb1+pwYs2DfGU0Z1GdMBUS3Io6qCaDXtgqdq2aBhK2A88XnwNoGzBawz9TGWESNZa7ukICA2SIq+M/iH/7hH3DaaafNCCwM2H7QlpuAQkjT2YCZaWXzAStQ21m4fa6EKD+3hVUk2JZuEaxUbxRbobS5fq8+erXkrVXsa0utT6XXreXJIEJGBMdiMbeZkAbxlUolr7JhgxybQZURvVZZHV/VPVUENMVRlS3OW6VSccqLr5/NhCeVQLav+wbMhcHS58w+syQr50QVNX1v7P9QlCsmIGCp4V//9V9x1VVX4f7771/srgTMErOKGbCBXMR8+zmtBaoR2Y2gRX60n74F2ILn2IBCFUIUVkp76/VWGbHC2vrU7T3tHFg3gKXi+ZvtFItFTExMYHJy0rEASu+rYLX347jaUfaU9rdskrIBnLcolsTOg1Uw5iIg2S5dBaoczBZWWVSmgPfU72y6qJ0rVSyUsQkIWGoYHBwM5YG3c8xqbwJfqVotojKfmI1f11qgtITVOo2yJBvR4roJk1UsVOFQy1cpX2sJazEge64dc5TQtoJ0amoKhULBbU/MYMJsNlvXfzs+Fb4a2d8MGjvCv6MoeNtXVfDUNaAKFfuiAtb37HwsgT1XldpORUzre+DLpNEtku15vD6KCQjsQEBAwHyhZWXALpSktWlR0qqMqisw14Usyqca5XPV+1kFJcoKtMyBLQij1q31h/tgFQJVOqKUDG2XSguFqU3PY1tquVerVRQKBZTLZbcHwNjYGIrFImq1GrLZrIsv0LY0eE8peg3si1JMohiWKGFogy5ZE4FQJkf97Lb2Q6v0eTMhr8rhXGAFuSoZ/G0DFvWdYz98RaF8MRIBAQEBnULb5YjVmuMGN1aAaUT+bKELPhfIRu2146JQIW8t2FbaspQ3UO9rtoJSLV1tIyrGwFrX9t6+eeB9isUitmzZgtHRUTemLVu2oFwuI5/P1wldK2BUeFu/P7cf5jUM7rPzwHYp0DiGrq4ud719nrVazcssac0BKppaUMnOQ1R/msGX9jhb+NrRuAxbidDnBtLfNh0xICAgYD7QdjaBBsCp9cjvOlFx0Fp+7QZQzQedqou8XeytMmSZAJ8PnH8TzWhqOyaluNnO1NQUxsfHMTw8jImJCRe4RqYgk8kgkUjUbVkcNVcqtHVvATsXvuvJJHBjJPV72+dp54bXa0qjKgicX+6O2S58bgW15DsRM6Bt6j05D42es2U/OhXPEBAQENAIHalAqFZkI/97K1AqnEJB07QaIcpinoty4ItRiLLmdA5srIBtU4/ZfHufC0QVLz2u7ZRKJQwMDLjNPYrFYp0gn5qaQiqVqoucjxJMNl7AsiBWQNtrVZjptRpjoXPjq9eg75HWPqCCUK1WnULQChugrhf7XlimZjbwKYI2DiIWq9/HIaqdTvQnICAgoFW0VXQI2GaRMh2Li7YKjbkoA9babWbBttLnTtC/bCcqEM5+Z+MOfEFi2kelkHl9VM0DnQ/uNcD9B8bHx52gLBaL7of34K6FVvha+DYY8ilGPlhlRdkjfm/Hb/ujAYIqXC3zxDRMtaKjYOfdp9R1wk2g1nxUnEUUfEGtOgcBAQEB84G2lQF+5mJXqVTqLCANgAK2RU/7/KiEtTp9i5/es13fcLNYA0IL31iaV8+3CkFUP7S/PheDCkkVlD4LlkLQ0uzVahWjo6MYGxvDyMgIBgcH6+h2Cn4WF+JnpdmtkPexAVGCM0pB8rWr47PfWR+5LxuA88lCKPre+a7TfviYAP3e9775lJdG8LWjc8rfjax9jV/Q8Whdj4CAgIBOo2VloFH6lpbA9flE9Zha+jZgTaPiGwn8RtR2Izq/GeiL1i2KNYiunXaA+ih/20e1mpUF0TH49ivQ+AwAKJfLGB8fx+joKEZGRrB582Z3bjabRXd3N3K5HEZHR2eUKwZQl6an7hmtA2Dn0kevR8EnpFXh0TgCX/S99lPZBZsNoe4lq1j53EvWf092i9fPhp7XZ6XuHMvi8FiUQmJdNMz+6ETqY0BAQIAPc4oZiMfjri6+7mqXTCadMPEJCp/1pJY/MJMt4HmzhVKvZDOs9aepeqSsWxUK6pLQBd8u4HSxRMFnnVraXdmJWq3magd0d3dj2bJlriIkj1Ox6evrcxsTUYD60gi1Lz7Xx2yg49J7Mo1QoUwA4N+xUQNYrfWtaXx8jqzjoJUjrYvB5wppZ7zK2qhg1x0gW4l9se4Z33sUEBAQ0EnMOYBwenprqVu1zCiMqAz4XAJ6PlAf0e1TBDoFbtpj76MW6mzYAMIyHADqhJJu8xwl+HUugHoq3c5HV1cXMpkM4vE4MpkMcrlc3fa4+n0ul3MBhJauV2tUrW8t/qN9mQ1U0NqUuWZzTYXGBlD6YLMeLKtgYxnYJ1t/YTbvgGV5OJ/q3oqi+/X5U1mLYjYCAgICOok5b2Fsa+LXajVUKpW6RdamRik1zXMsvarWtaLdeAEVsvSVa7/5HS1GTfubjeCzCo4KIlWWfALZWpW+ti1TEI/HkUqlnIDVuea5mUwGtVqtjhXg9SqkfILHCl491x5rBN/17Vi8lnHR/ltFUl0QVHBYNEkzKVQZUNcL76FFkVqBCnutm8Dn2SxeQO+t4+60QhwQEBBgMSdlgC4BLrrc6rKRewCor+vvO6fR4jdbulQFrwpV7Sdr9M9FKeCc8LpKpQKgfsw+FoLHNSfdBpIxwJH3USFo/f7suxb/0Z0NFeqasfNihXgr9LllOVQ4qzJn2SHtC9uxvn2C7SQSCadwqeJlXSDWBcR2daMoVWD1GfkQxZSoUmuVC82SsfEYPqYmKAEBAQELhTnHDHDR8hVG0QA8G9TFxdKm3Nn2FM0EczOhnUgkkEwm67bS9S3CAJBMJmdscNToXqrEqOBXIUrhp+2q4EkkEnX7Eyh7weMUHCwexLmiJWpz85Vy1uBNrW1g4wIaKXJRf/vOV/cG56VVxYqC3Xe+ZqpYl46P/te51L7pO6b1DZRViBLIGmdA2EBaKj8aw6FKM6H3sJ9VmQrKQUBAwHxhzjEDatXoMcJn4UTlgytFrtacz1psF1ZJ0T77YheUlm5Gg1tftkJ941bQqrWoAkqFme0XUM8SMD3Qp1RRSdBgQbXGfamDrc5tK8oAf1tFSwWmwvbHWtm+2JOoeADbngUVLMt80J3gUyKixq9KBNtWJcNmAtj3OkrZDApAQEDAQqEjygAX63Q6jVKpNGMxrtVmFrexcQO2TSu8NdrbJ8Qb9U/b5EJM+t6Og2AEuBVCKshUeaFVGCXwfX0i1PJTi9THWOjYrY+c/dLrNE3S9qWdeWwHlgWajUCjdU74FMNGWyvbPrTSZ8ui+OI9CL6PfK81UFC/o2uGGTfAzIwCqwTbeQgKQUBAwHyjI9kEpEB9lp66BOzCFrXIqWXVSnBaM1iLzQpW3/laV1/bUKHqE7C+LAk9v1HfKpVKHUXt67Nvoxu2wT7bsTW6/3whinWxCqGvT1b4WuvcKkp6zN5T+9LoGFkUq6D6FCU7t6oEaBok2SUGbnLMmrKqfdaUXOu+CAgICJhPzKoCoS5ONthOt6ht1Eaj7+bDErJCFagv8qOsAS06Xqc0MD/bGvqqHAD1SoA9FgWrLFG42CqOFBZMkdRnYMei4+ePT1g2cpnYcxv1X8ep/u6ocfviQlSgWleKPsdG9HozqBIG1CsczdgMHZsvcNGOhyyUKo42ZZN90Hb47jQab0BAQEAn0LYyYC07dQnofgUMXtMd8qrVal2RGRZ9sdQ1r7P3aXWh94HX0hplup0vLkCFuFpmqggwi4Jg8SXLBGh6mqaZ+ZSfbDbrCuPEYjGUy+UZQpDtaL99bhXOm37m87GCUK/X5xE11z6lQj+rAkXFkJ/V+lbBbhVMOzdaLMg3j+2+Fz7BqvsxaAXKqPHbVE6C+0N0d3c7oR+LxZBOp907p24cQmMY9LzgKtg5sWrVKvT29uLRRx8NtSYC5h1zKkesaVmEzQVXYRVlafp84/aePrdBK2mGKixUqKpg5/fWb0ylRIMAeQ23BwbgIvuTyaSjmzVwT5UBCxXwFDCaOWDdA7689SiLX61rmz4YpVypFe5DO0JXn6k+V63Gx3ROnsfoe+2bTyhGsQKtwipEPEYFqlaruX5EKQRWIaHCUygU3A6Reo7GCmgaqZ0TvhNWKQvugh0bqVQKz3jGM3DAAQfgpS99KY477jisWLEC1157La644gqMjo7OuGbDhg2YmJgAgDojISCgXcwqZsBabr5ofy6QpEh9/lgAMyxDtufzq/L82SIe31o+2cYyELT0NOCODAAFOwU9K/l1dXUhnU7XKQJkCbiw28XcWn+qEFQqFZRKJbcTIb9jeppVVnwxECqofBHrPjaGx/XHh1boaj5/VTqUQbLPROGrUaHBfD5Wo5NQNkDn1+fq8c1pPB5HPp932ytbpVj7bNkh62ZgGmxwEex46OvrwyGHHIKXv/zlbp15+ctfjr333hu9vb11a+WJJ56I448/3vsOPP74427L8gceeAAPP/wwHnzwQXzlK18JikFAW5iVMqBWulptPmsG2CbgfXXoNVCK12lkfpRVZu8RBRVMSvtbBkKVAAp5/qjln0ql3O9EIoFsNus+UwHgb7IDPiHGz2rxUxkoFouoVCoYHx93Ow1SaeDug0qZ87tGdLIKYxvnYZ9VI2aglWegDIyeT0GrbBGtZZ6rO15qe/a+vr63A1//a7WaUxb5rmg1TSvQVaHkM1QXlL73HKe6d5RR4Lum773NlggKwfaP/fbbD6eccgqOPPJIPPe5z21YgE3hWzsBYK+99nKfDzzwQABb3VTPe97z8O1vfxu/+93vnLIQENAILSsDWsSFC2JUfjf/prWki6kvYEx/2/ateyAqn78RrAXNY7oYU3DzNy19CvdUKoV0Ou1+stksEokEMplM3TWqUFhrUsfvE3AUAKVSCZVKBalUCqVSCaVSCcVi0bkPoubAxxD4rAMVMrrIWJeNLx5B5y8K9l2wrA+fJbdRptBVhYH3t2PoFBPAdrQOgI0fsftIWEWX75QvGFDfY90oaWpqColEoo4B0eJQ+r5bZSe4CbZPJBIJPOMZz3AW/n777Tev98vn8zj99NPx/ve/H7/61a/w6U9/Gtddd13DVNyAgJaVgUYLEQWGL5Kaiz+L49jveb3PH6zld9m2T6FoBp/1S8tPLXlVBrLZLOLxeJ3w7+7udsxAOp2ucwvows97qDWvgtW6ICgIWIEwk8kA2PpPXSwWUSwWMTo6inK5jEqlgkKh4NwJnD/1c1O40LUAwAUPslSy+sPts1WlwKfsWTeCL1bB/q3X6731Gfuem6+9qGPNoOyVdeFoPQaN4VA2Q11XmsYJbPX3WmVHmSjbnm/eVVG07orgKtj+kE6nccQRR+A973kPjjjiCCxfvnxB759IJHDooYfiy1/+Mn72s59h/fr1+NznPheYggAv5qwMNApu8lmHvmt96XdcOH2Cv12FIEpYKZXPhZuUru4EmM1mkcvl6nb90x9tnwK4Uqk4ZUCjx2u1bXsEUNHgeFS5YP/ISsRiMccQcA4I0s+amsZ7aXwEr6MS0ki4+JigqHltRVj7FA7LOkS11wmL2I5VBbV9D1Vg23kGZu6twbZ4naaEWuVCWYVG8RnKRtAdF3zA2xcOOuggfPOb30RfX9+i9qO3txfHHnssXve61+GlL30p/v7v/x5PPPHEovYpYOmhrWyC2VjkKuijoAuitTh9WQxzha0MR6o8lUq5n3w+j66uLqcEMEjQbrbDfQ64NTJ/63HrGtDAQ3U3UDnQGASyEMlkEsViEYVCwX2emJhAPB53jAH7REFGgU+moFarOTreCkCfsPYVBVIBtj3S1hp86bPMfYGVVlnjLojW9aTKpQpwZQr0HWhn/qhwBCxt9PX14fjjj8fzn/98vOENb2hZEZiensamTZtwzz33YNOmTQ3PTafTOPTQQ7Hrrru2tT4mEgkcc8wxeN7znofLL78cl156KYaGhlq+PmDHRlsBhL6c6kZWowapNYJ+b/3hvmC0uUCDBW3AIIVxJpNBPp9HKpVCNptFJpNxC7FaedVqFePj4462LxQKznpn4B8ZAt4DQJ0rIp/Pu3smEgl0d3cjn8875YBuCQYr8vjExESdULYUvI5VlQGl5mOx+tRJ33NpRk9vLwqBVcQanafuBKA+ALarq8s9Yzv/ZGbIHpEhoLKpsRNamlgDOhXBv7v9Yd26dfjsZz/rXH3NUKvV8MADD+Css87CHXfcgeHh4Rml0i1isRhWrlyJQw89FG9961vx1re+NTLA0Ic99tgD5513HlKpFM4999zAOAUAmGM54qggMcsIWKratuGLhLcKQqdAJUXTB5kqSEvcBgtSOACoS/0rlUoYHR3F5OQkyuWyi/5nsSCeT8FCwUGhUiwWUSqVkE6nkcvl6srRFgoF5PN55PP5uhoGWlvAVs3TzAWlofnZ5uvrM/PNk36naY2KdiL6G7mS5lupaKTQ+ASxMmG6RwUZAcsucH7VJWRZMRsEaxXrKDT6/wlYGojFYthtt93wt3/7t3U1SCxqtRpKpRIeeOABXHfddbj55pvxyCOPYMOGDS3fq1arYfPmzfjBD36An/70p3jggQewZs0aHHHEEdhvv/1aZmM/9rGPYXh4GJdcckldwauAnROxWotvwEc+8hGXHkWBViqVGkbH8zz6yZVutefpgqyWLbDNGieauSzUVw5si5in0Ae2uQRocSeTSXR3dyObzbpgQQ3+Ust/ZGQEk5OTmJiYwMTEhEsFLBaLXmvaTjHbZX9SqRQymYxTQuia6OnpQW9vL7LZLJYtW+ZiB2hZFgoFjI+PY3x8HKOjo6hUKhgZGXHPhW6KcrnshJgvj99azRTwvmeq5/C4HWsUpe1r03evTsNmSKirh7B/a32Gqakp98zI9PC7sbExVKtV5HK5OndTJpNx7462HxUD44Pv3Pe///0tj3upYHthj2aLZDKJM888Ex/4wAewcuVK7/McHh7Gww8/jKuuugq33XYbHnjgARQKhY72Y8WKFdhnn33wghe8ACeeeCL+8i//suk1pVIJv/vd7/Db3/4WZ5xxhrewUcCOgWaivmVmwC6g3Ju9EaWlQp6Wlc0YUPbAWls+C7gVHxnvaxch9ReTeqffPpVKoaenx33W/QDK5TImJiYwNDSE0dFRDAwMoFAooFwuo1gsOjqYnxuBwo99oUKQzWYdE1EoFDAyMuJcED09PS6oUfunLg8AjmkAtgUy6oZLvrx1jZS3ee42iNCn4Gj652wX/bkIC1+GQ1RQog3Ka+ceqrSwTSqGdA2Q2VFXl95HFdRW4mFsqmHA0sTb3/52nHPOOd6MKQB4+umncdJJJ+F//ud/UC6X560fAwMDGBgYwPr16/H9738fl112GV796lc3dCGk02m86EUvwgtf+EJcddVV+MUvfjFv/QtY2pjV3gQqoK2VboW8FS6WVrYR1mp1WgHEcxotjPb+WkqY9LwKUQpjCtp0Ol1XIIaugNHRUQwNDWF8fNxZ39Vq1SkA8XjcKUZR/VMLVdP/mA5YKpWQyWRcDX+NA0gkEsjn8+4YlRkWuOG90+m0o/w4l6qIaaS8fQZ2vm1Qp32Oep6N82gHPpdFK21YxasVanQuQlWZrunpaSSTSfT29s6IC9D5sP5YW2QrYPtFMpnE3/3d3+Hss8/2KgLDw8P4/e9/j/POOw8/+clPFrRvTz31FN785jfjYx/7GN71rndh7733bnh+PB7Hy1/+ctx1110dZywCtg+07Cb46Ec/WmdRqWBQGp8LOxdN+rrL5bK7xlcF0PpWdeHWlLlWBY1a4KwgqJUEGbSXy+XQ29vrlIFEIuGq/5GG37x5M4aHhzE8PIxyuewUAQCONrbCwOdbb+Sb17mhyyCXyyGfzyOZTGLZsmXo6enBihUrsHz5cvT09Lgsg0ql4twVmzdvxtjYGAqFAiYnJ+syG+ju4Fzqfgh04/jmWI9ZpUGfpVrQPqHrcxP4WIVW3QaW/o9iBiwbw/MbQd0EtPT5jOl2AVAXI8D78Pn5WCK19FtRTCwz8Pd///dNr1lq2FHdBG95y1vw9a9/3asIPProo3j/+9+PG264YVED9GKxGHbddVeceOKJOOOMM7BixYrIc8vlMn7729/iuOOOw+OPP76AvQxYCHTMTcDtcum3BrYJAlrbFNpcmNsJevIxBnMJnFLhZQMGlRUgNc+FngKTMQFDQ0PYsmULCoWCKwBEy1v7xriIRgFjyoDoOBVME0ylUk7gkK2oVCp18621DlivoLu72wl/KmQaJ0D3Dgsh8XlpbrwqCj6Xiwp9238VyJ0UApY9sBa4by7t9YpW6Xdf/APvq5tykXVhACrvocoH/1YXiyK4ArYfpFIpnHDCCTMUgWq1ih//+Me45JJLcMMNNyx6UF6tVsMTTzyB888/H8ViERdccEEkK5VKpfCCF7wAhx12GL71rW8tet8DFhZtlyNmmhyP+fLQNZXNR4u2Y93btls9Xy1B6xbQHH9a3mQvmC64ceNGjIyMYGhoyKX7MFBQ/ey8NqpvPkUmFvNH+Nsa/Qz+y+VyLnZBGYnp6Wn09PS4gMOpqSmUSqU6FkAFO10ZKsQt7a+sAVmVKIFrr1VGwCpAUfPj+97HTPjiFaIUD42F0JiG2Qpb6/fXOA3tC9+vqCwBdalRGWunTyGbYGkglUrhX/7lX/C6171uxnc///nP8da3vtXtJLiU8IUvfAH77bcfjj32WKxZs8Z7TiKRwGc+8xnccccdePTRRxe2gwGLipaVAfqro/zLwDaq1lfZLUootgK7GAN+y9P+rUF6tKBJ4WoeP9snIzA4OIiNGzdieHgYk5OTbn8AMgKa6qdBiT63R6P8cUaq+5Qnfub3ANDd3e3cLYVCoS7yP5fLIRaLIZvNOkaBWQV2MyT2wbctstL2OraoObfuAT1u3QW+59XKO+CLSfCxLJzvrq4ut+Mj/6ZyEPVMLKKi//ku0+Xkg0/5sO1o5UtfdUHbR18WSMDi4DWveQ3OOOOMGc+/Uqng3HPPXZKKAAAUCgW8973vxSWXXIKbbroJq1ev9p63bt06HHfccfjMZz6zwD0MWEy0ZSpRcOjCpgtf1OLerkVDa05/2m1HKXSCikEymUQmk3HFhCh0JycnMTo6isHBQYyOjjrXABUBFS4+6lxjFHQbY/3RmAv+VupYrUVa9xMTExgbG8Pw8DAmJiYwOTnp/h4ZGcHExIRTABhrwKqJ6gIBtm0lzXFE+fE1joCIcr1EZYHYn7nCF2Ng+0IFyxcwOtsAQt1mWt9BddXw3nxHGgWRUhFjzQoqmTbXWxVDnh+wuMjlcjj99NNnuAd+9atf4Y1vfCPuuOOORepZa6jVavjf//1ffPOb32x43oc+9CG84hWvCIGuOxFaZgZ8G8r4BH9UAN1cYgeAessoimkg1C2gQlnL+2qQF10AAwMDGBwcxObNmzE4OOiC70j7cuFXIansAIWPCkVrPWhEPyl7Wv9WeKrwmZqacvEKzCDYsmULyuUyurq6nBLATZNqtRp6enrctSpI2AfOkQpYrcngC4L0sS/8rXEE8xE0ZWMY+FxU+Pooeh+LNdt7K9RNZtkAvqM21kHPs9Up+Y7rM9F3PbgJFh8nnXQSDjvssLpjg4OD+NCHPoT169cvUq/aw9TUFP71X/8V//u//4sLL7wQ2Wx2xjm77747rr32Whx//PG47rrrFqGXAQuNls0kLkQaaBcVCGWvm8si5gsUAxpTvT7LlUJca/0z6LFQKGBsbAyjo6MYGRlx0fhkBbjoU5mwQYJ6D96HioHud8BcdG58RIWExzkmtaTZJpUWZjiw4NHY2BjGxsZcPEMsFnNBbLlczhVU8rlwVLHRvtN1EmXZq3UbFcynQrtVd0Ar4HNQS98KZBvQaoNRVbi28m42YjZsnQXLCvhiGdStogyT7QvjRkIg19LAM5/5TJxyyil11nK1WsVFF1203SgCxJYtW/DVr34Vd955Z+Q5+Xwee+655wL2KmAx0RYzQEWA+9AD9aVVFbNVAFoRGrZtG8CmAsi6BqyA5OY/4+Pj2LJlC4aGhjA2NuYYAYKCUtsl20BBqhsZRcVVkBHgcW5bXKlUXMaAfq9ggODIyIg7v1qtumDIWq3mqhhmMhmXWUDFRuMDdAe+VCpVt6GOZYGsa8OOhwJRFQOfIqDPSYP8mkGFsY2z0MqW2h/2W4WuBjVaV1ej2I5WYdtQdoDg2HVvAm5+xP4TGvgZWIHFxYoVK/DNb34TL3zhC92xoaEh/Nu//RsuueSSRezZ7DExMYGzzz4bP/7xjyP3UjjppJPwxS9+ccnGQQR0Di0rA9zSl/5YBmXpArsUUqOs4OJiyjRCWuPA1sW+XC6jUCg4K5uVBQnrX1eoMKIQtt9bKJui8wnAKRtkAWwbLEzEGAf+A7PvyWQSPT09rh3dZ8EKTbVurMCywX82Q8CORwVw1Lh17HqdzQzwwTILGshprXCNt+Cz51itkqNt2lgA7aetgBkVXNio/6r4sP+2Lc1QSCaTdUqD7W/AwuJ1r3sdXvziF9cd+9WvfoULL7xwu2Zu7r77btx///11So5ir732Ql9fX1AGdgK05SZQIWGDzzrhl50trLBQq1QpcFtSuVqtug2GxsfHHdWu1K+W6aXwUpcDha3NLogKqLQuDGUt6DKwiofGSgD1SgxdGXQbMIqeiordGllpaX5WBcUGyym9DviDA7WPPEcpegu9ztL3rQQbKh3PPrMt61+3rITta6uZBTZgtFXYa9kvskham4PPncqezu1i/n8FbHUR2Hdl8+bN2/0zGR8fx5lnnomnn37a+31fXx8+85nP4DnPec4C9yxgodGWm8Dn/4zyjy401CeuvnAtN6wCcXp62u0BsHnzZgwNDWFiYsJFd3Nx5vm6oFMJ4J4CjfzijVIq6SJgPzmftOpZPMgGr2mZ5OnpaSdYarUa+vv76xSUXC7niiVRWHL/AhUw1mrluZZebxarwTGrksj2fQLZF48QNZdWOPriSLTfGmhoXRNRfnrfmHwbG7UD65JgaqIv3oAuHE0ptTUNAhYWK1aswDve8Y66Y6VSCVdcccUi9aiz+OlPf4pTTz0V3/nOd2awm11dXXj729+OP/7xjzjnnHMWqYcBC4G2Vjgbya0L2WJTmDZOwDIDtMB1J8JisegCB8kKMIUQqI8TIDRA0NLUUVZzo/5qvjmD46i8kC3wsQzsP4MJ6eooFAp1JZIZnEh2wFq4VDw0I8KyJ5rJYZ87j0UFk6obwTJJ+jct/GZZCKq8aCAe22wUxU/B7uu3Mjo++FILZwMqJVRY6MLRGAKfSypgcZBMJnH44Yfjmc98Zt3x+++/H3fffffidGoe8Otf/xoDAwOR359wwgno7e1dwB4FLDTa2qiIQYS6+U8nFy1f+lYrPmVdxG2UOasNkhVgmwys47bEVAKse8BG9mvgYFRgnRV0VsCUSqW6sSpdTzaCc0zft7XUOYZYLOaKIpVKJRfzwLGqm0T7pxY/UO8GsgF76p5gH9mXKAtehZ7OibZrFYN2LV8bKKjPwrq16JPn97q7oI2NmAussmAVDI11sH2kQtDKOx+wMHjd616HK664oq6uwObNm3H66adjbGxsEXvWWTz99NO4//77scsuu3i/pyERsOOirafLHfbU0uokooRnI1jqmddSqFJ5ofCmoGMWATf40c2HaKHr5kO0spkSqAyDT4jZGgeabqjCy16r96Jrw2Yo8Dw+Dyo0hUIBo6OjmJycrHPrsA/aN8sOWObBKifANsWEMQFkDGwcQhRb0igLpJkbwioo1tLX+/ra4WKumzZFxUj40Iw50PMUtj32Wb9n9ohmSlhFrZmLJmB+sGLFCvT399cdu++++3DbbbctTofmCdPT0/j6178eycz98Y9/DLsZ7uBomRmgT5tCQgO4OgG1PjVYrREsk6B+Yl/OP79jih53INT7aT+0TK+2qdYlBbsVFJYWVyir4Msj15gCFkZSoaVgFTuOpVQq1Sk3aj37KiCq20ej3FWAax95rF0r3roKohSQqDlT9iBKCfW5aVT4Kj1PaC0KzgfRyGXQ7LgqOnpPm4nQLKNiNoxJQGcQj8fx2te+dsbxn/3sZ4u6E+F8Yf369SiXy94iRHvuuScymYyLNwrY8dCyqUGafT7KUyq176t8FwWNCfCVndV4AfX9Uxmg0NRKg2zX0shWEdCodV8QnBXgtKQ1P14tW5+rQYMYtbQw54eWJFkO/p6cnHRsgVa1s3UQOEcqjDSq3frzW4mFaASfsLbsQJTrQV0pqrQpM6OsCefXl9mgYyO7ohkJsxlTIzSLQwhYmli+fDkOOeSQumOVSgW/+MUvFqlH84uRkZHIuIF8Po9ly5YtcI8CFhItMwM2iKxTrIClv63l1EqsgFruyl7wOAUoj5EqLhQKruCPCgNbQ0H7qff2WYL8zOtVeVJr1Td/dqwUzLXa1rxzS80D2yh/KjdUcFQR0Lb5W2l7uxWvrz9W0M6FsvZZ7bZ/Fqp02RgD35jsvbSoTyOlZLbj4N/8bZUp37V23CFGYGmBxoni4Ycf3qECBxWbNm3CH/7wB+y2224zviuXyztUjETATLS8omv9fEs5twNddJW+1+99Fj+/0+uj/LG0gu3ugmyD6XWsNKiWIdthH3g/DRzU2vHajyiFwMcS+CxVnzJgAzate4aCTl0EjIMg26Hzov3yUfc26E9ZBF9cQDsKoRW+KuAbCWMV5ozD0P7pc1AFQ9vXwFCl7OmKidqBkO3oj32ufIe45bSyDfzR65k66Mt6mCv7EtA5rFu3bgYTyo3CdkRUq1WcccYZ2Lhx44zv+N4G7LhoWZpz0dONe+ZqyVhaX6l+teZVOKlwVn+9sgLKFKgwpf92enpr0Z6oHQmB+rRCKhS6kHMubDCgKjM+ZYl9szEA6iYhKNwoAFOp1IxAO7ZVLpfdhktjY2POt6fuEp0jO+/KpviOcYy+YMZ24FMINJ0zKh5BlRUtR2xZErv3Au/JebVKobbhe2aW/dFFUYNBlV3RazVdUt93tmcZp6AILB2cccYZM6jxHd2tc//99+MPf/jDjOOtBM8GbN+Y1dNVwTgXtLLwWcFq3QkqlKL8zurrV6uOfze6N4UKF31agdoX9WVHjcln/Ucd8/3TqbCy/5j6PCzzYGn/qN0I7Xk2TsDOnaXCZ4tWhZ8qDva9oyJnGSTtN8dlaxm0I3j5bFj7wfYtKmhU3w/blv4EV8HSgo8tuvXWW3foraQrlYo3U2LVqlV4wxve0JBBC9i+0bIyYIXPfGiJdmG2wtJaVVYR4HGfhUsohauR9kBjrV/7ZqlhFQZWCPsUBFVYfHS5CgqfMNdAQCoCFJSMf1BrW6/XcsdqZftcHJwbrVOg/dV5ny18SosPUQoTr7Nzb5+BfebqStK+tGL58T6ct0aFgnieMmvKIviU2aAQLF3sDH5z3/9AMpnE5z//eRx88MGL0KOAhUBbqYUqYDq1YKkA9FlUaqVaBcQXfGXbUyGmboJW0+MstQvUl9vlpka2lgHvaa1FO0ayDRq0qN+xXDH7z+fAdpThUKpdfdJ2rnXr4Xg8XqcMaDs2RiEq0n8uaOUZqLtCnzO/s0yVtdr1M9uyaaO8zi6ENiaB7VC5oGvHPjvtu97b9ovPli6DgIDFht3QixgYGMBDDz20wL0JWCi0rAyoUOiUT5OC0scI6GLvu58vZsH6kPU8tcZ9tK220SpU8ahWqzMK+9hzdOHnvdTKtG3TwrfxEI36o/dsZHGrRc2+6PXWl67KgM/N4BN0bNce9ylujd4py1RwbjR/n99F9YOftfqfZbha9Qc3ijPwZZjYPul4G7mrOvV/FhDQDh544IEZ/1sAMDw8HOoM7MBoe6MiBrHNdqGylL0es24AfkeriZZ+lKLABdoWGYrHt9aAZ6qfxgBEuSGIKOrYJ2jK5bK7ty+tUCPRfXPiU3C02FOzuVTWQwWVXq8bH/mUBWVUtF8679pXVSb0bzsen6vE93eUsmOzHqJiIvR+lgHRH24U1I41ru4kn+/Uxizws3UJ8TiAOoZCs3XI2AQELDSe+9znev8vzjvvvLCV8Q6MtpQBrZwH+IXXbKCCxfrvfYGChLVmeYzX+RgBzTDwBYG1Mr4o1wbpYyss2OZsFnduc9tMaLH/Pn++sgRRfnWer66VRla9vYbnsK8UZsoo+K7lb8uYWPiu5TuiQhSoF9rKKOi2wVqDgWhVMYjKOLCKo889pMwU/+b8qNsB8NdNCFgYpFIprF27drG7saQwNjYW2KodGG1tVMS0Qk1X68RiZf3xvu+jfO6+c1X4RJ3P/jOIjAtxFEvgo+B9/VPrnIu63Sgoqj8q3FSQWgHuu05jG3RLY7alAXSa8qaKjY4lyoXiew7KNKj/Xq1cn2Ji24hSsuz9FFaxscqjpeUbKRxzhSpSykoAM7cxBuoVXf72sQsBC498Po/9999/sbuxZDA+Po6nn356sbsRMI9oSxkA6q3buS6orVyvdHsjQaX99AlPa8GqxejzgzdyDdj7WyFGgcsUJN3tsZUxW5dCKwyMKmi6QyP7US6XUS6X65QDX/yHFfg+/77ti51jWrkqHPU5+pQBnhPFCvgEp49R4Lm8n1VG6Jqaj2A9qxTyPjbo1ipf9l1tJ8A1YH5QLBbxxBNPYN26dXXH50OJXEpIJBI49NBDZxwfHh7GI488sgg9ClgotLwicmFPpVKuAtx8+DSj0hajrNIoweSjxikotEqhChprMfvGZ/3B/K3XWQuPaWVROxwCqEs7s3RzI2vW0tLMg9edCnVc2k87r/q3KheqMFkr1pe+acdP6lufayuWviKK5bH94Fwy7ZPP3ioTOn9K888FNqaC74IqJT73FJ+JupOiahYELAwmJyfx8MMPzzj+0pe+tG474x0N8Xgcy5cvX+xuBCwCWmYGWGhFLZ9OxAz4LPIohcAH6xbwCRMu+IwX4MY/dmdD3cFQKXQKGY0DqFQqiMViSKfTAGZG0PsEuFY65G8GsnEbW998MgjQFzTHeWL9AI6N7Vr3gFL4qrjEYjEXJKpBh7Yeg+1jVIaJ7xkqs9DILUBBaCnzZqwBBatlCzgHulmVdR/4rHf7LJtBx2sFBpUTnud7jsE1sHTQ3d2Nfffdd8bxgw8+GHvssccOm2K37777Ys2aNTOO/+lPf0KxWFyEHgUsFFpmBnwUdzuKgPXtWkrUWmjNhJcNFuNnLahjiwNp9blUKoVsNussVhUo/G2Ly3DMeq71BVvBy35xrkjRq9XqUxyscPDNHe9JJBIJZDIZdHd3u+wJLZ2s+zBEWa6+52VdFkpjq+UdxRzYubFjtWPT+YtiCrSNRiyQbdO2o+8Ln4/2sxXhbDMV9IdtaEZBsx0gfW6rgIXFxMQEbr/99hnHu7u7d9jAwq6uLlx44YUzXCMAcNdddwVlYAfHoq44voXQd8xSvFGLqFKuKgR5LiPKaT1TGWDtf7VQuWCrQsC0PLZVq23LHmg2BoUqPb7yur7zfYJd3RKpVMqNSzdn4hi4d4EqNsqK+IL8LPtjFRMVsKpURNHbtk093z7TVhRPXmf74aPbdd51PD53DNDZmALffDSap4ClgSuvvBLj4+N1x5LJpNenviNg1apVkUGTP//5zxe4NwELjQUrNN0ui6DCQq+39LK9h2UGNP8e2CYA0+k0crlcXbBdoVCoo+tZSEjpcxYB0vQvn9+dv6P837zWsg72PLZBRUAVEh1zJpNBLpdDPp9Hd3e3GxPngAGEygxECWwfhd1M4fExJz5Y5gDwb05kXRO++fEd43xRYeKzVkWEWTCcf84zaXzdJbJTsMyWKlaNxhOweHjyySdRLBaRz+frjr/gBS/w/k9s71i5ciVWrVrl/S64r3Z8LMldJyyFrMf50wqNywVYN+6hnz6dTiOTyTg/si/ugPehUkA/vxWkPndAowA5/b4VoWzdCVZQc0x0fXBcqmxYpsO6avQ7+ywaCUWl162rwEK3UOZca4aBnZcoBkjvrYqYnu87ZhUWfZ4asOeLi4la/FWh8f2t4+Uz0b7Ysdh5DVh62GuvvZBIJFwp8h0FL3vZy5DJZOqO1Wo13HLLLfj973+/SL0KWCi0bfr4BEOzRdtezzaUptZgPv62vldfP2j105Jn+pwKOg2iY9vZbBZ9fX3o6elxfVDlgOOif79UKqFUKjnr2sYK8JgvWE+PWardzqP1lat7wO5GyOvJBuTzefT29roAQo6be7CXSqU6VsAn6G0MgM0k0M/twtLybEOj7PWePhbBtqfCWs9nMKUyOPpMqQhYP76tvGjnRY/Z8ei5/F4VDK1+SXeVvm92XL6fgIVDsVjE5s2bZxw/6KCDcP755+9QO/jFYjG87GUvm3F88+bNOPHEE72ZFQE7FlpWBorF4owd7pTC54LcqLiOtZp4zC6YtpxwKwLIt1Bykae/nHn/XV1dyOVyyOVy6O/vd5kSuVwO2WzW+dytb1lT86anp+viDXxC1QY/NlvUrWXKdlQJUAuW989ms+ju7kZvby+6u7vdM6ASUSgUUCwWZyhKCr2HzrlPCFtB7WNDdCxRMQc+hsO228ivboM+9VlRoVEWifewAarKblDZ01gOMhp6zCoCfF99jJV1d2mgq8Zs+MB32G69HDD/GB0dxY033jjjeDqdxrvf/W7ssssui9Cr+cHatWu9ysDdd9+NJ598chF6FLDQmHU2gc8qouCKup6LoK8ccKOgs0YWERd7nmcj/W30vvZFBSkD77R6n6V6bXCi7q1AC88GtflgFQObfaDnaWS7znMstrXSYDqddvEP+XzeBUJy7JpB4LPKVchpgF0rln877IBVMNQdoxZ+O/e3bhS91iomGlDJeeXc+BgbfeeoRBG2cJEqinY8UUJeA1LtOVYRUnYmYGHxi1/8wvt/3Nvbi5e//OWL0KP5wX777TcjXmB6ehrXX3/9DhcbEeBHy6uLj+puBzZQzlfMplUhAMz0MavFBtT7wcvlsqP5WVI5lUph+fLl6O/vx5o1a7BixQpnXefzebchE9tS4aqfSd/bhbrVhdunGKgCYy1CxgdkMhn09vZi2bJlWLFiBXbddVesXr0a2WwWtVrNjXlyctIFRlr3hh2fHvf54lXpavd5se8+xsUK0CilodEcWv++tsECU8C2fH9VtOy7pO3qfGh8RqOYEFUsohZSn+vFMh12DEEZWHj87Gc/w1133TXjeFdXF9761rfOyl221PD2t78dn//8513NFOLOO+/ElVdeuUi9ClhotLy6cPEkrKUSRSkrbEGYqPvo960InGY56fS7WwuY7oJ8Po9sNluXcqjKgN5DlQC2Z90n6vLwuTfsMdt/TSHUNEReS394Pp9HX18fli1bhpUrV6K/vx/pdNoJ0FKphEKhUFeG2Cc0o6j+qOfTCVj3h7Zvn3mjd8b3zKPcIDaI0gdfzIIqac0CV60CxbH6+uyLV1CFwCqJIWZg4TE4OIj3vOc9GBgYmPHdS17yErzoRS9ahF51Ds94xjNwwQUX4DnPeU7d8cnJSdx4441hl8KdCC0rA6SjdcHSBaoRLQ5sE2LAzJS7doW/nmetOm1L2YFKpeKYASo18Xgc+Xwey5cvx6pVq9Dd3V0Xla/+dx0jAwq1oBGpY2vV+fqsx9X9QEVAFQ8buMbgx56eHvT09GDZsmVYu3Yt1qxZg+XLl9dZwMViEaVSyf228R76PKz16ROyPgVC27MxEr5ASl9RJj3XJ/AavRPN3EsqyAkb62Kv0z6rG0GZFN+1eswqxz5GxroCGik9sw3aDJg77rvvPnznO9+ZcXzVqlX42te+hhNPPHERejV3JJNJfOhDH8Juu+0247tvfOMb+Jd/+ZdF6FXAYqHlcFhGzlqBP9sFyvqIOwEu0lzQtfiM5trHYjFXvjeZTCKfz6NWq2FiYsKNj7UF+FuZES7Y/E6hPntr5VqK3CpESl1TQFgBmUql0NPTg97eXqxcuRJr167F7rvvjv7+fsRiMRSLxRnWpCobUXUb7DENnotiDqwy6Eur0+t1Pnhfe43vXWhXEeBct9JGFKIUBR63MRa6DwT/9rlDCM1m0HPsvfX/JGBxUKvV8MADD3i/22efffCv//qvuPnmm/HEE08scM9mj1WrVuGTn/wk3vWud3m/v//++52BE7BzoGVlYK5BJNPT9bvW8be16K0l6vtMWGqYC6xPyNLSK5VKiMViqFQqLtUrl8shHo9jcnLSFR2amppCPB5312hqn/aJRWvsoq2CTqPa+VsVCxuhzhgEWqixWMwFXeZyOfT29rpYhzVr1qC3txeZTGYGq2DLHus8qvshyr3C/ljBpsLcJ7RshH7Us7aK0lKFb6xRrgllT1TA8zkSPvdIwNLFvffei/Hx8RkFiICtVPvJJ5+MCy64YLug1XO5HD7ykY/g5JNPjjwnZK7sfGhZGdBKbXNhAwDMEJ4+K5nnNBISSlNz4aUQ1+OaWz8+Pu4CCMkMcJe/qakppFIpZDIZVKtVd87ExISzuDkPOi9UQnTBtzEDOm+WSrdQVoFuC6Y95vN5rF69GqtWrcLuu++OZcuWucAfS8kzHRSYWVVPrdUohkbZCn6vc67jBOAC86xl63sHdKz2+6WoGCg7ZN0EVB6TyaQrLOSrZcB2msUdBCw93HrrrXj961+Pyy+/HHvvvfeM78844wy85S1vwdve9jbce++9i9DD1tDb24svf/nLOOaYYyLPKZVK+MUvfrGAvQpYCmh51W1EcbcLn+Ue5aNuBh8Va/3Peo7W6KegZL5+d3e3K0SUyWScspDL5ZDJZFxRIiusKCR0HwTNWWdsgQYe2n76IvqpCGQyGRfD0N3djf7+fvT397usBypB6pO3ZYdtJL/tP+/JHy3rrD5+6/6wyqGP6VErw1LmlplYqoFy1uL39dHGROi4la3R9yRg+8DU1BRuvvlmXH311d7v8/k8nvOc5+D4449f4J61jkQigSuuuALHHHNMw4JJtVoNk5OTC9izgKWAlpmBKDq/HZZA/coKtuVLrbJ0qy9oy95jamrKbeFLS4yUPxWCiYkJdx8WGkqlUqjVaujv78fq1asxPj6O8fFxTExMuAh+DcizAty6ETTFzTIK1jpUJoQKRyaTcfUQ+D0DCFOpFMrlch2FzQJDk5OTdTuMWfdMo88+Kl//toKQLIw+W2V2VIngM9FnbWGfN481e890HjrpY1dFxbIBUceUhWnEpDS7r68fAYuLu+++GyMjI+jr6/N+f9xxx+GWW27xFitabHR1dWH//fdvWjnxwQcfxMaNGxeoVwFLBS0rAxotT/p7NouTjzoFtkVfK61vFQ9+jgoO02t1cyEu2hRKpVKprlqc9iuXy7nFemxsDKOjo9i8ebPbz2BqagqFQsEpBbT+KcCswKdiovdQ4c7rqACQCWARJF9RnGKx6NwWbJfPiH0rFAruOsZG2Eh+K8ys4Pf5vvm9xhKo8LdCS/dIsEGJ6qKw74hS8TboMerZzwd8rEdULAvfNd1MSuc3KgshCjo/UZUjAxYWV199NZYtW4ZLL73Uq9Dut99++MY3voHbbrsN559/PtavX78IvfSjUqngzjvvxHOf+9zIc6ampvB//s//wfDw8MJ1LGBJoGVloNMLkVpRSmFbgQrMPtvA0vBEpVJBKpWqC7IjJc9/8O7u7jqLmwGGVBToWqAVrrEK1pokrAJlBR0VgZ6enroUQSpADFgsFosYHR1FLperEz66h4FWyVNFSAVxKy4ZFdo2ZiAqJ54/Orauri4XvKmR9z4rWRUfDTDspMXfDhopIQpf/IfPpdQOg+FTiAMWD9PT07jpppvw5JNPelPyAGDFihV4/etfj40bN+Luu+9eMhsaTU9P44orrsBf//VfY9dddwWwde8BsqR33nknHnnkEdx6662L3NOAxUDLygCFU5Q1NxdYNkBztC0Fq31otEhTqahWq67v/L5W27rFrfqBaTUzCKy7u9ulHWYyGYyNjWF4eNhV9KNPvqenB5VKBeVyGYVCYUb1QObvW6GnlfESiYTbTplxAYlEAqVSySktHH+pVMLg4CCKxSLS6TSq1Wpdf7TaHhUcMhQavGaZmUbPRpUAy9KoouVTLlQJoZvAukyiniE/L5YS0C6sa6UTrIV1IwUsPh566CG8853vxGWXXYZ999038rx3v/vdOOigg/CDH/wAV1111ZKo8X/77bfjyCOPxNq1awEAjzzyCIaGhgDAsYkBOydaVgYsre6zfNuBpU+1XQpp34vZKFZBF0z1TfvoaQb80bfOc6rVqvPVp1Ipl2nA/QtGR0cxOjqKyclJVKtVpNNp1x4L+zBIkYJPGRCCQlv3FuBeCdxjoFwuI5vNurLCqnBUq1WMj4+jVCphbGzMWd3cuVB3grTz3UyoRDEHviBH33n6tzIbfBa+uApfH7Tf24tCAHTOmldFy8eYBSwebrnlFrzvfe/Dj370ozpjQ5FMJl2VwkMPPRTve9/78Pjjj8+rUnfQQQfh6KOPxs9//nPcfvvt3nMefPBBPPjgg/PWh4DtE23VGWiFVo6CT4hbf7VNz+N1SnU3urcvyI1WMTCTplelIBaLOd8+t5al8qDxDOl0GplMBuPj4853TzcC/fLpdLrOPUGrXClvKgOZTMalDlLp6OnpQTqdRqlUAoC6ugOaNVCrbY36nZiYcH0A4FINWUOf/VDlxMe02Ln0BbHZQEHfefaZcsxapMmyCvad0D75+qHn2u8WQmj6/hfse+ubl3b7pu9MwNLCbbfdhu9+97s49thjkclkIs+Lx+N4zWteg1//+tf47Gc/ixtvvBF/+tOfMDw83BHFoKenB/vssw8OOugg/PM//zP23HNPbNy4ESeccAJuvvnmObcfsHMgVmvxbfynf/qnOd1IF3AVsvTJ87tWo62joAsuhaHdapjHGMxHCzqbzTorXfcn4C6GutMdg/WYbaDBhFpoR/2F7BtjEzKZjFMC8vm8uzeF+cTEBDZv3oyxsTFs2rTJKSCslQCgbgOirq4u9PX1Ye3ateju7nb9t/UHbBBhO9SgFbZRioDvGrpnLDOgc+PbG4Df22wTX/nk+YCvXT0WJahbmZtG99Trp6e3ltSe6//hYmBHZjSSySSOPPJIfPnLX8aaNWuans91ZMOGDbjppptw++23484778R9993X1n1XrFiBd7/73Vi7di0OP/xwPO95z5vBPl533XV429veFtIEAwA0ZypbZgY6AV3QCSuMmqW9NINa6NaiBuCEv723xhFogFsqlXLtWiWCNH8+n3cUPncL5P3tTmBUAugSYLAgj1FRoguDOw5SqBcKBcdGaMEjzq+6XmxAH1Bf8Gg2i/RsgjstG6CMBJWYRnUQotpTxsaOu1OYi5IxVyHI+UkkEi5wNGBpoVKp4IYbbsAPf/jDhhX9CK4he++9N/bee2+ccsopePzxx/GJT3wCjz76KICtW2bfd999M6oAdnV14YADDkAqlcLBBx+MT37yk5EuikceeQSnnXZaUAQCWsaCKQONaGi+0HOlQmu1bWWEbRxCoyp6/L5YLNYV7dFMA7IHqiwwKI4VC3UHQ1v4SAUw26N7QJkSBiNOTk5iZGQEIyMjdWwEGQgqA2Q9YrEY0um0czForIQyAL4gNytAG8VlzOXZ+FxNGmDZLAbB9iuK2dhRLFG+q4y7mKuiHDB/OOuss3DPPffg5JNPxvOf//yWr4vFYnjGM56BL37xi+79npqawsaNG2e81/F4HOvWrasrDx6FL37xi0siYDFg+8GCry5RFDEF8lxTyKyLgW3a7AQ9BmxTJGyluEql4iL+GUyo16m7o6uryzEB6qtn+/xnV5aBwYo8n/ULxsfHMTY2VhcwyHbYfi6Xc24FKgU9PT11VRLt/X1R6T7LvdMClfPLGBBVqKw7gL/1M+fSHrP3sO2020cfCxDl+lgIUFkjoxSwNLFlyxZ8/vOfx3e/+11cddVVOPLII9t2d/I9SyaT2H333Wfdl8cffxzf/e53Z319wM6JBVMGfIsnBZW1eOYijCgwNHpd768len0R9/TNarAeAwqnpqYcG0B/fFSUvvq1LTugfm67M5jS/7Varc5lwWJEZCu4jbHur8DsBl/JXy3mo/PfDJ1SDjgXdr58bIHOLRVFW8HSBu7ZwMNG49Hr9PhchPxclREfrMIasLSxceNGHHfccTj88MNx5pln4rDDDlvwPoyNjeGpp55a8PsGbN9YNDeBHo9anH3WX7N7sA2l3gmNYFcBQstfz6PwYdBgIpGoUx4YM8BjjfpLAaWCjcfsDoVkBnjPbDaLcrlc18e+vr66gEe1tNmWZhxEzaGyMaqo+HzwnEtlO9Rn30yxoPLlO277p8qSxj7oNY3ep2ZoJLR9e3C0ik4rA5YlCcrA9oHx8XFcd911uPPOO/Ha174WH/rQhxpW/es0HnvsMYyNjS3Y/QJ2DCy6E3I+/NKE+qH5PaEWuc0+4LkUltzNUIPd6EZg0B/rEkT1i+1qdUANSCyXy46VIDug5/CzWr+qINhSuFG76yn4naZs+qxt/u7q6qqrNWDZl0Zo9Jztdz7Xig9zZSyiGB1t1wrhhRLKUc8sYPvBxo0bceWVV+KnP/0p/v3f/x0vfvGL0dPTg5UrV85bXEu1WsUNN9wQigcFtI1FVQaslU7MJZAwSoDYY3QDMGiPUHparUQroMkQKFtgfYRWeAP1mxnpvXRPBQYI0k3A+aB7wjIpHLPuVOgT8FHlcn10ub2W11vlRJmDTgmuhVzIfO+LHgsWecBcsWHDBrzzne9EJpPBqlWr8OxnPxtHHHEE9t9/fzz3uc+NLGvsi39qhKeffhrnnnsuvvrVr3as7wE7DxZVGVALk5hrRoEN3FPB5bs3hS6pdVLu1m0AoC7+QNMQo6J7rZtC29B2rcCldU/rX89XwaSuDC1GRGi6nk9g+xSFqE2oKPhVGeA9G8VOLHVYwc9jyqrY7+fLqgvYcVGtVjExMYGJiQk8+uijuP7665FIJNDX14dnPetZM87P5XI44ogjnEIwMDCA2267reH/1pNPPoknnnhiu/r/C1g6WHQ3gUVUNHtUXIEPalnqroEKK4B5zKYkqqC3gsEGtllh6PNt25K+wMxSz3r/RgLWBgqyfe2vVm+MchNoLIUGLWrfVMmim8OWJo7q51KGFfxR74VPEWjEiMxHMGHAjoWpqSkMDAxgYGDA+32oHhiwkFgSyoAVhNxwJ4rCbra4quCyAXEWyiKUy2XnA08mk+47tf6t0FNBqoF47Ifvvs0UmyiKWvtqSxNrkSV1K9g2fffVAEQdE1Bf5U8DHcmKWDdIVDCh3l/ZisXwbUYFCNpCTYQ+DxvQyHnQ8+znuabLNgqYDAgICOgEloQy4AOtbrXYWl0QeV4rLgcu2ipkNUKeQXO1Wn3Rlygh76Ocbd/UGgcwYxc/pe5t4SKbJqjWq1by0z5pO81iBHQc1r2gTIOPQm+k5PgCFTsda9AqdP6tq0SfvVX49G/fc/Tdp1N9DQgICJhPLFllgGjHPQDUFxOiRe9bTH3KhQpnCoREIuEWfB5ngR/ftVF95TGWSo66VqHxAzyPfdDxKs3dSAGKmkOfsmVpcSvsLUvQCizFrscWS+BZoW7nV+FzGwAz6yX45jEgICBgKWPelAEVSnOhgtulSK3/P+r6KEVA21EfuWYP+KJ6rUD1td+ojKgKfe2DpgjaeINGgZeanmczGHywbEKjObeWs2/MPqVEMw/YDpWKxVAGrIKjioEvHsJ+tkqAj30JykBAQMD2gCXNDKil286iqn58YGbJW3uuvZfSwtoWf6yPnUJEC/8o9axtq5Kh7TOrQfvEzyrYfXOhAjUWi7n4ASvYWo21aPV768LxzaWOI+rchRCYUYqL0vy+LApfO9Y9EKVsBkUgICBge8GclIFGi6EtTKPHGrWnQpTwCRbffXWhb0abRwWJ+bICdEwUspq2x3uwXoGv3r72R9tXJcP69/kTtbeCnSfb1myFrs814PvOd6yRQuHrj08Q+663pYibsRcK+6xt330xGWRUdO5tjIFt374XvvsFBAQELEXMSRmY7SIXpRz4KFgNImy1T2qpt7rXPPujNC+FgwpxHlfr2wp6FVQ+d0kqlaoLVNO9CHzBgaoUqL8+aly+oLZWYi9889wuI6Ofm7lnVAGwvvtG7bejCNh++fpDF4z2j/Ptu17vb/vtY0/a7W9AQEDAQqPjbgIr/Gzevi6iPqXAHotKMWwFjWIGfLCUMfvZyGes1/gCzGz0PYAZefrWB68C0gpYn4vBukUsHT+f/njLorSidPiubxV6n7kWqGoFls0g7FxroKp9R3z9tM9lIcYSEBAQEIWOKgNRe9ID9daVpXzV0m0kRJvBWo5RC3Qr11t3gBV2PtrZ950taBOLbSs93Ip/WoW8vYdVQrQ/C+mLn+t9oqxpe461wH2Ya90CW0eA97Z9sEqCz4XQyvO11wcEBAQsBuaFGWhUcpeLnlbt81lP+n1U+lqnF0/rGvDR3lFWXpS/3CcQ1Jpv5IP2KRVR9cm1rUZxD/OBKMHZDpqdH6UI6N+dHKuOQ98/O9aofuvzs8/M97yDIhAQELCY6IgyYAOwFD6rD6gPLNR2eG6jDIAotLtgR12vsCl0UQJcr1cBQoaCQrpW27avQbN+NaOOff593VJ5amrKq6DMFTofNl3QKn2N/Oc+Qd5oThopTT7GxHetryKlT/lSd5H2W+tEsA1VHpWt8TEIVvmNcuf4+hcQEBAwX+goMxBVlMVnUUdZxCpAeYznN4NdTLmQc3fCVvyyje6jlmlUHIMKfaYgajlfugg4Tl/aXyNFIWqO2T5dHCpAOuWPjqLgrS+dY4/H43XbQtsiRSowGykRje7FYz6Xil5jmQUfY6WBm9pPPjcN4OQYo9xFNh1Uwe8bxcK0wjAFBAQEdAoddxNoSqEuvHocaFz0Z7bCy/p2bTlfft9uhoIPPp82j0cVrNG+ATNZh1bgo+FV2KkQmmtN/Kh7+9wittCOKoD6PH2sgO8+rTIa7QpJH1NhLW+bSghghnJqa1LwmH3vo9wbzcYR3AYBAQELiZaVgXaElgp8mwbHev+EjyZWytee105fKWx1IVfLbrbwWed6H6WNyUqoJWkVB0uftzI+n0BulV2YLeyzYR8SiUSd4I/FYt7NpmzKZKP72PfCh3aeoQptS8Frn3QcvmcSZen7lAqrlOq73+zZhDiCgICAhUTLyoAvba0R1Er05cVb14EuvnaxbndRtAu/bjOsgmuu8C38FC7c1Ih/WwXH5+tuxU8cRR8vhODwvQNdXV2ubgJLKsdiMaRSqRnKigpCjq9Raedmwp5ttMKAWBeBKhs2VsCnoOoxjSPQPnM8vr777u3ro28uAgICAuYbs3ITNBNAuiDqYt8sd9/nO25nMVTFQ+lyFdJ2h0Ce0879fOf4hL4VOFGLvRUktl+N/OdR2Q1RaNWapnJG4WfvyUBFZTcAzHBTJBIJd67WV6BypjEUUfPS6H2zdHzUmLV/HEMj9qFRWzbVM4rBIjuibpMoxcXHhmmbURk1AQEBAZ1Ay8qAUvsWvoXcHtdAsnbaaAeqfEQJF/XrdtKqVmHuU3QsVJBrbrsV8Kpk+FiZZlau7WOzTYF0nnzfWbC9qakpp2ypEpFKpZBIJBxToC6TWCxWtyeD7XMzhkDfs0ZKk223mYLlu87Oue+Yfe+V7bIxFbYvvowEMi/N+hwQEBAwVyzoRkWLbdlQYFuXxWzSGNtFI6s26twoX3RUe1EuCEVUnQJFVLljFXJ2zqamplCpVDA1NYWpqSlUq1Ukk0nnMpmamnIMAdtXxa2RcG7mMpitkJyLgG2k8LFNW27Z/lbGyta2WOz/lYCAgJ0LS3rXwk5DrXdNgavVak2Zi4WCWv5qSfNvoLFvuZEi0EjgNrqHtXrVZ16tVjE1NYWJiQmMjY2hXC6jXC5jenoaqVQKuVwO6XQamUzGfU4kEq79ZDLpFDTr2rGfo8bj8/E3QyssSSNo/IRleID6OhrWDeVjrXxpikvhfQwICNg5sFMpA8RSs76a9cNalY0EvSoDPos1iqHQz0pXq0/etkUWoFKpYGJiAsPDwyiVSiiVSgC2CvpKpYJ8Po94PI50Ol2XZcA++wo7taIAzUUZ0LmaDVToq4LEuAj2wzceVb70u+AGCAgIWCzMWhmYzcJro9GjAq/mC42sTRss1+4mR7627H1939nrfIKi1fgGe/5cBZ3th84HlYFyuYxSqeSYgWKxiEKh4NwElUrFpdRlMhmnCGg1RjIDPstZg+eazVur0PevmQsiijWJit0g68H33VdXg8pDlGvAxhjMhcEICAgIaAULxgzQP2wrAc7WqpsL7AKsi206na47j98TahFaWAHcbtEfFSI+ga4C0yobjXL4m/XBugR8fbKCk32sVqsol8uYnJzE6OgoisUiJiYmMDU1hWQyCWBrTEYul3NxAhq3oZ85dtvfqBgGWwugVXcC0dXVFSlotU2+u7oRlyouPgWmkVtA+68uAv0f4Rxr/+e6CVNAQEBAFGZddKiZReW7XgWr+lp95y0ULBUeZQUSrVjmlhputR9WwDe73ioMPp/7bOGrsKfMSVR/VCGxgtA++0bCrZF7wHee/ezrmz2nlcwKXsvzfFk1UfNt2aVmioPusql9DggICJhvtKUM+AKfZgOt9tauUtFpWKqXPl8VgLqA69bKvrbswt8KlA2wFRobMSZqVfosalVKrM+61X6poqFpgdonZhek02l3TblcRjqdRjKZrHMNKPUdtTVzp8sotzK+RmABKfuuaM0CO//W1dLKeKJiCQICAgLmG20zA8DslADfNYu54PksSk11UxcBBWGrlQvbnR8V6qog2bmJUgiAmRH/1kpX67MVaM0EayFTYWEcQK1WQ09PD6amplAoFJBOp1EsFpHJZNDd3Y1cLlcXL6D3sPtHAJ3bWIloZp23yj74FERfu5ZlanU8qhT64hECAgIC5gvzsjdBO23q7m0LqRg08hOzT/Rx+2IcWmnTZ61HjVEFThR97RMSLPLDKH39TufVZ4U3Gg/vZSv1aX2AeDzuUgO7u7vdlsmJRMKlEeZyOfejygDbUUbE9s8XNzFbRAlvncNG86GwRas4HltYyLJKli1QWOVNj/N3UAgCAgLmC20FEFoLeq50rm+hW8xFzxcPoYt6q/2z47I73vnGzTmNCgCMEgpRvuxmlrDS/o0sZV8sg4IKQTabBQBks1lUKhX3HWsNZLNZty+ECj3fnhUWnVISowRzq4qoz9dvFRfd6hio37bZVpb0KYCNxh+UgYCAgPlCW+WIuRi1SjU3g42WXkhFoN37tLLjXCMaX/+2FiXQusCLmqNm47GCrJEAtAqQXkPXCYWb7tTIQkP8m+ek02nnVgC2KT5RSoZlCpoFG7YCGzehPn/1+7eDKNYnKghQUw21T7Zvts2FZs0CAgJ2PrSsDMy3kF6qix2FhFrT7cBaj8DMwL6FGrsVOo2eqY9WB1A3F0wdjMViyGQySKfTrhARBS2VALoImFrI/vigWQeNzmsXVvlgaqGNFZnr/aLcAEB98KwyAo0UM1XAAgICAuYDLSsDKhQ7RelrKlUz4bRY6OrqcjX2Z7OHgRVstoZAK/77ToKBgc3Gwr5Zl4l1WShisZjLHpiamqpjA+x5zQSuj4KfK9iOZjb4qh926j76tyqAykzY+9n3wefmCQgICOg0llw54lb98a2c2ykwKE7pa2sxN7semBkYx+/aUaraGbOPiSAlbgvbRPmqfYLYKjY20BCYWVyqVqu5aoQM2Iu6twq/+aq+R/8+FRj17XcKjZQL35z63oOgCAQEBCwEWlYGfAv3XBcpjdRXH7NdRFWYqnDqVOxCM1Bw6L3Vumy06LcizDqhAPmOs2ZCPB7H1NRUnY9fhXhUexxX1Dgt9a3xAnbcPjahkaBbCKVPFaN2XRK+d9I3n42ULF+bvvPV5RIQEBAwH1gyzIClUnmMsIvvfPXBwkfra9Eda8VGtavnzWUMUUKk1etsWehWlIso5sK6jGxGRCM/eCt97RSskLYMjSou7d5b24gS1q202UgxYtutbD8dEBAQMBu0FTMwn/BZZmpxNTo2n/BtkqNCv9U6BD4ruVNoVdjoua1S4lR+dB58PnYVqM2EVpT7YT7hC9qkELfjagU+5cHXRqttRp2XSCSQSCQwPT3tUjYDAgICOo1YbSFX5ICAgICAgIAlh/k19wMCAgICAgKWPIIyEBAQEBAQsJMjKAMBAQEBAQE7OYIyEBAQEBAQsJMjKAMBAQEBAQE7OYIyEBAQEBAQsJMjKAMBAQEBAQE7OYIyEBAQEBAQsJMjKAMBAQEBAQE7Of4/Vbr5W3swvhQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "gray_image = ...\n", "\n", "# run the Otsu thresholding function\n", "threshold = seg_otsu(...)\n", "\n", "# Binarise the image based on the obtained thershold\n", "binary_image = ...\n", "\n", "# Display the original and binary images\n", "f, ax = plt.subplots(1,2)\n", "ax[0].imshow(gray_image, cmap='gray')\n", "ax[0].axis('off')\n", "ax[1].imshow(binary_image, cmap='gray')\n", "ax[1].axis('off')\n", "\n", "# Display Otsu's threshold value\n", "print( \"{}\".format(threshold) )" ] }, { "cell_type": "markdown", "id": "0f9b8669", "metadata": {}, "source": [ "### 2) Algorithme de division et fusion\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "e56b3749", "metadata": {}, "source": [ "Programmer une fonction 'seg_div_fus' qui prendra comme entrée:\r", "- Une image à niveau de gris.\n", "- La taille minimale des divisions de régions.\n", "- Le critère de divisons donné sous forme de variance de données.}" ] }, { "cell_type": "markdown", "id": "c6b97d7b-a6ee-4c5e-9cc6-5d62d1770364", "metadata": {}, "source": [ "Et donnera en sortie les régions segmentées.\n", "\n", "Astuces:\n", "* Vous pouvez utiliser des appels récursifs de 'seg_div_fus'.\n", "* Utiliser des masques binaires pour tester l'adjacence de régions." ] }, { "cell_type": "code", "execution_count": null, "id": "e6f921c6", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "acffe0b3", "metadata": {}, "source": [ "### 3) Détection d'objets dans une image binaire" ] }, { "cell_type": "markdown", "id": "15319988", "metadata": {}, "source": [ "Programmer l'algorithme K-moyennes dans une fonction 'seg_k_moy' qui prendra comme entrée une image couleur et le nombre de régions ainsi que le nombre d'itérations maximal, et comme sortie les régions segmentées. Chaque région prendra la moyenne de sa classe comme étiquette.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "f1ce29ec", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }