Serie of T.D N $^{\circ}$ 4 (S1)

<u>Exercice 2</u> : study of a sequence of the type $u_{n+1} = a \times u_n + b$

Let the sequence (u_n) be defined by $u_1 = 2$ and, for any integer n of \mathbb{N}^* , $u_{n+1} = 3u_n - 2$. We consider the sequence (v_n) defined on \mathbb{N}^* by $v_n = u_n + \alpha$ (with $\alpha \in \mathbb{R}$).

- 1) Determine α so that (v_n) is a geometric, and specify the reason et le premier terme.
- 2) Write v_n , then u_n as function of n.

Exercice 3

Specify, if possible, the variations and the limit of the sequences (v_n) suivantes :

1) $v_n = (-1)^n + 1$ 2) $v_n = -3 \times 2^n$ 3) $v_n = 3 \times \left(\frac{-2}{3}\right)^n + 5$ 4) $v_n = \left(\frac{-5}{3}\right)^{n+1}$

Exercice 4

Prove by recurrence the formula:

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$

Exercice 5

Prove that for any natural number n, the number $3n^2 + 3n + 6$ is a multiple of 6.

Exercice 6

Let x be a positive real number.

- 1) Prove by recurrence on n that, for all n natural numbers, $1 + nx \le (1 + x)^n$
- 2) Propose another demonstration of this result.