Chapter 1 – Numerical sequences..

I- Generalities.

1) Vocabulary.

Here is a list of numbers	: 1	3	6	10	15	21	•••	(terms)
We can number them:	n°0	n°1	n°2	n°3	n°4	n°5	•••	(rows)

So the term of rank 4, in this example, is 15.

If we name this sequence (u_n) (Note: the name of the sequence is noted in parentheses), we will note:

 $u_0=1$ (the term of rank 0 is equal to 1) $u_1=3$, $u_2=6$, $u_3=10$ etc...

For a natural number, a, the term of rank n of the sequence, is called a general term. (He is noted without parentheses, unlike the name of the suite.)

Note: you do not have to start the numbering at 0, you can start it at 1 or another rank. 2) <u>Sequences defined explicitly as a function of n.</u>

A sequence(u_n) is explicitly defined as a function of n when it is given, for all n, by a formula of type $u_n = f(n)$.

<u>Exemple</u>: Let u_n the sequence defined for all $n \in \mathbb{N}^*$ by $u_n = \frac{3}{n} + n$.

We can then calculate any term in the sequence..

Exemple
$$u_{100}$$
 : $u_{100} = \frac{3}{100} + 100$, $u_{100} = 100,03$.
We can also calculate u_3 : $u_3 = \frac{3}{3} + 3$, $u_3 = 4$.

3) <u>Sequences defined by recurrence.</u>

A sequence is defined by induction when it provides:

- Its initial term
- and a relation allowing each term to be calculated from the term which precedes it. (Called recurrence relation)

<u>Exemple</u>: Let (v_n) sequence defined by : $\begin{cases} v_0 = 10 & \text{initial term} \\ \forall n \in \mathbb{N}, v_{n+1} = \frac{1}{2}v_n + 3 & \text{recurrence relation} \end{cases}$

Here, we cannot directly calculate any term. We must calculate them step by step from V₀:

$$v_{1} = \frac{1}{2} \times v_{0} + 3 = \frac{1}{2} \times 10 + 3 = 5 + 3 = 8$$

$$v_{2} = \frac{1}{2} \times v_{1} + 3 = \frac{1}{2} \times 8 + 3 = 4 + 3 = 7$$

$$v_{3} = \frac{1}{2} \times v_{2} + 3 = \frac{1}{2} \times 7 + 3 = 6,5$$
 etc...

4) Direction of variation of a sequence.

Definition 1: We will say that a sequence ($u_{}$	is:
---	--------	-----

- Increasing when for all $n, u_{n+1} \ge u_n$
- Decreasing when for all $n, u_{n+1} \le u_n$
- Constant when for all n, $u_{n+1} = u_n$

When a sequence is increasing, decreasing or constant, we say that it is monotonic. (This means that its direction of variation is constant).

Example of a non-monotonic sequence: (u_n) telle que $u_0=1$, $u_1=2$, $u_2=4$ $u_3=1$ et $u_4=0$.

(This sequence is increasing for n varying from 0 to 2, then decreasing for n varying from 2 to 4)

<u>Note</u>: if the inequality is strict (> or <), we speak of continuation strictly increasing or strictly decreasing.

Exemple : Let (w_n) the function defined for all $n \in \mathbb{N}$ by $w_n = \frac{1}{3n+1}$.

To study its direction of variation, we can calculate $W_{n+1} - W_n$ for all $n \in IN$

$$\forall n \in IN, w_{n+1} = \frac{1}{3 n+1} = \frac{1}{3 n+3+1} = \frac{1}{3 n+4} .$$

So $\forall n \in IN, w_{n+1} - w_n = \frac{1}{3 n+4} - \frac{1}{3 n+1} = \frac{3 n+1}{(3 n+4)(3 n+1)} - \frac{3 n+4}{(3 n+1)(3 n+4)} = \frac{-3}{(3 n+1)(3 n+4)}$

According to the rule of signs, $w_{n+1} - w_n$ is strictly negative for everything n (car -3 is negative, 3n+1 is positive since $n \ge 0$ and 3n+4 Also). So the rest (w_n) is strictly decreasing.

II- Arithmetic sequences.

1) Definition.

Definition 1: A sequence (u_n) is arithmetic when there exists a constant real r such that, for all n, $u_{n+1} = u_n + r$. the real r called the reason of the arithmetic sequence.

For all $n \in N$, $u_{n+1} = u_n + 2$.

Exemple :

 (u_n) is an arithmetic sequence of reason 2.

2) Calculation of the general term of an arithmetic sequence.

a) When the initial term is the term of rank 0.

Exemple : Let (u_n) the arithmetic sequence initial term $u_0=5$ and reason $r=7$.	ce of	<u>General formula</u> : Soit (u_n) an arithmetic initial term u_0 and reason r.	c sequence
$u_0=5$	(For n=0)	$u_0 = u_0$	(For n=0)
$u_1 = 5 + 7$	(For n=1)	$u_1 = u_0 + r$	(For n=1)
$u_2 = u_1 + 7 = 5 + 7 + 7 = 5 + 2 \times 7$	(For n=2)	$u_2 = u_1 + r = u_0 + 2 r$	(For n=2)
$u_3 = 5 + 2 \times 7 + 7 = 5 + 3 \times 7$	(For n=3)	$u_3 = u_0 + 3 r$	(For n=3)
$u_4=5+4\times7$ etc	(For n=4)	$u_4 = u_0 + 4r$ etc	(For n=4)
For all $n \in N$, $u_n = 5 + n \times 7$ Or $u_n = 5 + 7n$.		For all $n \in N$, $u_n = u_0 + nr$.	

Theorem 1: If (u_n) is an arithmetic sequence with initial term u_0 and reason r, then, for all $n \in \mathbb{N}$, $u_n = u_0 + nr$.

b) When the initial term is the term of rank 1.

Exemple : Let (u_n) the arithmetic sequence initial term $u_1=7$ and reason $r=10$.	e of	General formula: Let (u_n) an arithminitial term u_1 and reason r.	etic sequence
$u_1 = 7$	(For n=1)	$ u_1 = u_1$	(For n=1)
$u_2 = 7 + 10$	(For n=2)	$u_2 = u_1 + r$	(For n=2)
$u_3 = u_2 + 10 = 7 + 10 + 10 = 7 + 2 \times 10$	(For n=3)	$u_3 = u_2 + r = u_1 + 2 r$	(For n=3)
<i>u</i> ₄ =7+2×10+10=7+3×10	(For n=4)	$u_4 = u_1 + 3 r$	(For n=4)
$u_5 = 7 + 4 \times 10$ etc	(For n=5)	$u_5 = u_1 + 4 r$ etc	(For n=5)
For all $n \in \mathbb{N}^*$, $u_n = 7 + (n-1) \times 10$.		For all $n \in N$, $u_n = u_1 + (n - 1)r$.	

Theorem 2: If (u_n) is an arithmetic sequence with initial term u_1 and reason r, then, for all $n \in \mathbb{N}$, $u_n = u_0 + (n-1)r$.

<u>Note</u>: if the initial term is the term of rank p, then for all $n \ge p$, $u_n = u_p + (n-p)r$

3) <u>How to prove that a sequence is arithmetic</u>?

a) By proving that its absolute variation is constant.

Definition 2: We call absolute variance of the sequence (u_n) the difference $u_{n+1}-u_n$.

Theorem 3: A sequence (u_n) is arithmetic if its absolute variation $u_{n+1}-u_n$ is constant.

Proof:

If $u_{n+1} - u_n$ is a constant equal to a, then for all n, $u_{n+1} - u_n = a \iff u_{n+1} = u_n + a$.

So by definition, (u_n) is an arithmetic sequence of reason a.

Conversely, if (u_n) is an arithmetic sequence of reason r, then for all n, $u_{n+1}=u_n+r$ Let $u_{n+1}=u_n=r$, therefore its absolute variation is constant.

4) Sens of variations of an arithmetic sequence.

Theorem 4: An arithmetic sequence is:

- (strictly) increasing when its reason is (strictly) positive.
- (strictly) decreasing when its reason is (strictly) negative.
- constant when its reason is zero.

<u>Proof: Immediate because u_{n+1} — u_n is equal to reason, therefore of the sign</u>

ofreason.

III- Geometric sequences.

1) <u>Definition</u>.

Definition 1: A sequence (u_n) is geometric when there exists a constant real q such that, for all n, $u_{n+1}=u_n \times q$. the real q called the reason of the geometric sequence.

	×1	0	<10	×10	×10 ×	10
Example	0.002				20	
Exemple :	$u_0 = 0,003$	$u_1 = 0,03$	$u_2 = 0,3$	$u_3=3$	$u_4 = 30$	etc

For all $n \in fl$, $u_{n+1} = u_n \times 10$. (u_n) is a geometric sequence of reason 10.

2) Calculation of the general term.

	a)	When	the	initial	term is	the	term	of	rank	0
--	----	------	-----	---------	---------	-----	------	----	------	---

Exemple : Let (u_n) the geometric s initial term $u_0=3$ and reason $q=5$.	sequence of	General formula: Let (u_n) a geometric initial term u_0 and reason q.	etric sequence
$u_0 = 3$	(For n=0)	$u_0 = u_0$	(For n=0)
$u_1=3\times5$	(For $n=1$)	$u_1 = u_0 \times q$	(For n=1)
$u_2 = u_1 \times 5 = 3 \times 5 \times 5 = 3 \times 5^{-2}$	(For n=2)	$u_2=u_1\times q=u_0\times q\times q=u_0\times q^2$	(For n=2)
$u_3=3\times5^2\times5=3\times5^3$	(For n=3)	$u_3 = u_0 \times q^2 \times q = u_0 \times q^3$	(For n=3)
$u_4 = 3 \times 5^4$ etc	(For n=4)	$u_4 = u_0 \times q^4$ etc	(For $n=4$)

For all $n \in \mathbb{N}$, $u_n = 3 \times 5^n$.

For all $n \in \mathbb{N}$, $u_n = u_0 \times q^n$.

Theorem 5: If (u_n) is an geometric sequence with initial term u_0 and reason r, then, for all $n \in \mathbb{N}$, $u_n = u_0 \times q^n$.

b) When the initial term is the term of rank 1.

Theorem 2: If (u_n) is a geometric sequence with initial term u_1 and reason q, then, for all $n \in \mathbb{N}$, $u_n = u_1 \times q^{n-1}$.

<u>Note:</u> if the initial term is the term of rank p, then for all n^{μ} , $u_n = u_p \times q^{n-p}$

3) How to prove that a sequence is geometric?

a) We prove that there exists a constant number q such that for all n, $u_{n+1}=u_n\times q$. This is

the definition of a geometric sequence!

<u>Variant:</u> if we have proven (or if we know) beforehand that all the terms of the sequence are non-zero, we can calculate the ratio $\frac{u_{n+1}}{u_n}$ and prove that it is constant (then equal to reason).

Theorem 7: A sequence with all non-zero terms is geometric if and only if relative variation $\frac{u_{n+1}-u_n}{u_n}$

Note: the constant in question is q-1, where q is the ratio of the geometric sequence.

<u>Proof</u>: Let (u_n) a geometric sequence with non-zero terms of reason q (Note: q is necessarily

non-zero since the terms of the sequence are).

For all n, $u_{n+1} = u_n \times q$ so $\frac{u_{n+1} - u_n}{u_n} = \frac{u_n \times q - u_n}{u_n} = \frac{u_n \times (q-1)}{u_n} = q-1$.

(We have the right to simplify by u_n because $u_n \neq 0$ for all n) The relative variation $\frac{u_{n+1} - u_n}{u_n}$ is therefore a constant, equal to q - 1.

• Conversely, if (u_n) is a sequence with non-zero terms such that, for all n, $\frac{u_{n+1} - u_n}{u_n}$ is equal to one constant C. $\frac{u_{n+1} - u_n}{u_n} = C \iff u_{n+1} - u_n = C \times u_n \iff u_{n+1} = C \times u_n + u_n \iff u_{n+1} = (C+1)u_n$.

 (u_n) is therefore a geometric sequence of reason C+1.

4) Direction of variation of a geometric sequence.

Use will only deal with the case where the first term and the reason are positive, therefore the cases of geometric sequences with positive terms.

Theorem 8: A geometric (u_n) sequence of strictly positive initial term and reason q > 0.

- if q > 1, then (u_n) is strictly increasing
- if q=1, then (u_n) is constant
- if 0 < q < 1, then (u_n) is strictly decreasing

<u>Proof</u>: Let (u_n) a geometric sequence with first strictly positive term and reason q>0.

As each term is obtained by multiplying the previous one by q and as the first term is strictly positive, step by step and according to the rule of signs, all the terms in the sequence will be strictly positive.

	, n 1 n 1	
If $q>1$, For all n, $u_n \times q > u_n$ (en multiplying both members by u_n which is strictly positive)) Let $u_{n+1} > u_n$. (u_n) is strictly increasing.	If $q=1$, For all n, $u_{n+1}=1 \times u_n$ Let $u_{n+1}=u_n$. (u_n) is therefore constant.	If $0 < q < 1$, then, for all $n, 0 < q \times u_n < u_n$ (By multiplying the 3 members by u_n which is strictly positive) So $u_{n+1} < u_n$. (u_n) is therefore strictly decreasing.

For all n, $u_{n+1} = u_n \times q$.

IV- Some results about the sequence (q^n) , Or q>1.

<u>Note: The following (q^n) is a geometric sequence with initial term 1 (for n=0) and reason q.</u>

<u>1.</u> Limit of the sequence (q^n) .

The definition of the concept of limit is outside the program.

Intuitively, we will say:

- That the limit of a sequence is $+\infty$ if the numbers u_n end up exceeding a number as large as one wants when the values of n become large enough. We then note $\lim u_n = +\infty$ ².
- That the limit of a sequence is $-\infty$ if the numbers u_n eventually exceed such a small negative number that we want when the values of n become sufficiently large. We then note $\lim_{n \to \infty} u_n = -\infty^3$.
- That the limit of a sequence is a real L when the numbers u_n end up accumulating around a

fixed number L when n becomes very large, we then note $\lim u_n = L$

 $n \rightarrow +\infty$

<u>Theoreme 9</u> - if q > 1, then $\lim_{n \to +\infty} q^n = +\infty$ - if q=1, then $\lim_{n \to +\infty} q^n = 1$ - if 0 < q < 1, then $\lim_{n \to +\infty} q^n = 0$

Propriétés (admises) :

Si $\lim_{n \to +\infty} u_n =$	$+\infty$	$\mathbf{L} \in \mathbb{R}$	-∞
Alors, pour tout réel b, $\lim_{n \to +\infty} u_n + b =$	$+\infty$	L+b	-∞

Alors $\lim_{n \to +\infty} a \times u_n =$	Si $\lim_{n \to +\infty} u_n =$	+∞	$\mathbf{L} \in \mathbb{R}$	-∞
Si a>0		$\infty +$	aL	-∞
Si a=0			0	
Si a<0		-∞	aL	$+\infty$

 $\underline{\text{Exemple}}: \text{If } \lim_{n \to +\infty} u_n = +\infty \text{, then } \lim_{n \to +\infty} -2 \times u_n = -\infty \text{ and } \lim_{n \to +\infty} -2 u_n + 100 = -\infty \text{.}$

Application: determination of the limit of a geometric sequence of reason q>0.

<u>Exemple</u>: If (v_n) the geometric sequence of initial term $v_0=8$ and reason 0,1. As 0<0,1<1, $\lim_{n \to +\infty} 0,1^n=0$, so $\lim_{n \to +\infty} 8\times 0,1^n=0$ then $\lim_{n \to +\infty} v_n=0$. Let (w_n) the geometric sequence of initial term $w_0=-10$ and reason 7. As 7>1, $\lim_{n \to +\infty} 7^n=+\infty$, so $\lim_{n \to +\infty} -10\times 7^n=-\infty$, let $\lim_{n \to +\infty} w_n=-\infty$.

² And we say "The limit of the continuation (u_n) when n tends to $+\infty is +\infty$ » or «The sequence (u_n) diverges towards $+\infty$. »

³ And we say "The limit of the continuation (u_n) when n tends to $+\infty$ is $-\infty$ » or «The sequence (u_n) diverge vers $-\infty$.»

⁴ And we say "The limit of the continuation (u_n) when n tends to $+\infty$ is L. » or «The sequence (u_n) diverge vers L ».

1) Sum of (n+1) first terms of the sequence (q^n) .

Theorem 10: Let q be a real number different from 0 and 1.

then the sum $S_n = 1 + q + q^2 + q^3 + ... + q^n$ is equal to $\frac{1 - q^{n+1}}{1 - q}$.