Polynomials and rational fractions

.1 Generalities about polynomials
1.1 D efinition of a polynomial with real coefficients

Definition 1VV.1.1 We will call polynomial with real coefficients
any function P: R — R of the form:

n
r — P(x) = Z a;xt = apz™ + ap 12"+ ap_ox™ 2+ ...+ a1z’ + ag
=0
where n is a natural number, and @n,an—1,an-2,...,0a2,a1,ao are given real numbers called coefficients
of the polynomial. The number ao is called the constant term.

The set of polynomials with real coefficients is denoted R[X].

Exemples :
1. The coefficients of the polynomial P (x) = x* + x sont 1,0,0,1,0;
2. those of the polynomial P (x) = 5x are 5, O;
3. and those of the polynomial P (x) = 2(3x + 1)(x? - 4) = 6x3 + 2x? —24x -8 are 6, 2, -24, -8.

n

Theorem IV.1.2 P(x) =) a' is zeroif andonlyifall its coefiicients are zero.
1=0

1.2 Degree of a polynomial

Definition IV.1.3 We call the degree of a non-zero polynomial P, denoted deg(P), the highest power
of the variable x actually present in the polynomial.
In other words, let P(z) = a,z" +a,_ 12" ' +a, 22" 2 +.. . +a1z! +ap if a, #0 sodeg(P) = n.
si ay

- If an=1, we say that the polynomialis unitary.

- If P(z) =anz™ , wesaythat P (X) isamonome of degreen.

- The set of polynomials whose degree is equal to 0 is made up of constant polynomials .

Note : The zero polynomial P (x) = 0 has no degree..

Exemples :
1. Let the polynomial P (x) = x* + x, then deg(P) = 4;
2. Let the polynomial P (x) = 5x, then deg(P) =1;
3. Let the polynomial P (x) = 2x? + 6x3 - 24x -8, then deg(P) = 3;
4. Let the polynomial P (x) = 3, then deg(P) = 0.



1.3 Valuation of a polynomial

Definition IV.1.4 We call the valuation of a polynomial P, denoted val(P), the smallest power of the
variable x actually present in the polynomial.
In other words, let P(z) = a,2" +a,_ 12" 1 +.. .+ any 12" +an, 2™, if an, # 0 then val(P) = no.

Exemples :
1. Let the polynomial P (x) = x* + x2, then val(P) = 2;
2. Let the polynomial P (x) = 9x°, then val(P) = deg(P) = 6;
3. Let the polynomial P (x) = 6x3 + 2x2 —24x -8, then val(P) = 0;
4. Let the polynomial P (x) = 3, then val(P) = deg(P) = 0.

1.4 Eperation on polynomials

Two non-zero polynomials are equal if and only if they have the same degree and if the
coefficients of their terms of the same power are equal.

1.5 Operation on polynomials

a/  Sum of polynomials

Definition IV.1.5 let P(z) = Y a2’ and Q(z) = Z biz' two polynomials with real coefficients.
i=0 =0

The sum P + Q is a polynomial defined by:

S

P(z)+Q(x) =) (a; +b)z' and s <max{n, m}.
=0

In general, deg(P + Q) < max{deg(P ), deg(Q)} and we have equality if the terms of higher degree do not
eliminate each other..

Exemples :

1. Let P(x) =4x3+3x2+4 et Q(x) = —x?> + 2x + 5.
then, P (x) + Q(x) = 4x® + 2x? + 2x + 9 and deg(P + Q) = max{deg(P ), deg(Q)};
2. Let P(X) = x>+ 4 and Q(X) = —x®> + X + 6.
then, P (X) + Q(X) = x + 10 and deg(P + Q) < max{deg(P ), deg(Q)}.
b/ Difference of polynomials

n m
Definition 1V.1.6 Let P(z) = Z aix’ and Q(z) = Z b;z* be two polynomials with real coefficients.
i=0 i=0
The difference P — Q is a polynomial defined by:

S

P(z) — Q(z) = Z; (a; — b;)a’ where s < max{n, m}.

In geral, deg(P - Q) < max{deg(P),deg(Q)} and we have equality if the higher degree term is not
eliminated.

Exemples :

1. Let P(X) = 4x3 + 3x2 + 4 et Q(X) = —x2 + 2x + 5.
then, P(X) —Q(xX) =4x3 +4x2-2x—-1 e deg(P + Q) = max{deg(P), deg(Q)};



2. letP(X)=x2+6 et Q(X) =x2+x+ 2.
then, P(X) - Q(xX) =—x+4 and deg(P + Q) < max{deg(P), deg(Q)}.

¢/ Product of a polynomial by a scalar

Definition 1V.1.7 Let the polynomial be P(z) = Z a;z'and A € R*. We have (AP) is also a
polynomial definedi by : i=1

(AP)(z) = i (Aa;)z' and deg(AP) = deg(P)
i=0

Exemple : Let P(x) = x5 —=7x® + 14, then (2P )(x) = 2x® — 14x3 + 28.

d/ Product of polynomials

Definition 1V.1.8 Let P(x) = Z a;z" and Q(z) = Z b;z' be two non-zero polynomials with
=0 =0

coefficients real and of degrees n and m respectively. The product P.Q is a non-zero

polynomial of degree s = n + m defined by :

s k
P(x).Q(x) = Z (Z aibk_l-> "

k=0 \i=0
Exemple :

The product of P (x) = x® + 3x? + 4 et de Q(X) = -x? + 2x + 5 is the polynomial of degree 5 definedby:
B +3x2+4)x(—x2+2x+5) = —x5+2x*+5x3 -3x* + 6x3 + 15x% —4x? + 8x + 20
= —-x®—-5x*+ 11x3® + 11x? + 8x + 20.
1.6 Divisibility in R[X]
a/ Division according to the decreasing powers of the variable (Euclidean division)

Theorem 1V.1.9 Given a polynomial A(x) and a non-zero polynomial B(X), there exists a unique
pair (Q(x), RJx)) of polynomials such that::

A(z) B(x)
A(X) = B(X)Q(x) + R(x) ~—— ~——
Dividend Divider
and degree (R) < degree (B) -
Q(z)
~—~
Quotient
R(x)
——
Rest

Exemple : Let us divide the polynomial A(x) by the polynomial B(x) with:
AX)=2x*-3x3+5x>+7x—-2 et B(x) = x> +x —2.

Beforehand, we will have ordered the two polynomials according to the decreasing powers
of x. We then arrange the polynomials in the following way:

2x4-3x3+5x2+7x-2\x2+x-2




Definition of a root of a polynomial

Definition IV.1.11 We say that the number a is the root (or zero) of the polynomial P (x)
if and only if P (a) = 0.

Exemples :
- 1 and 2 are two roots of the polynomial P (x) = x® -3x + 2 since P(1) =0 and P(2) =0;
- 1 is root of the polynomial P (x) = x® + x -2 since P (1) = 0.

ii/ Factorization of a polynomial by (x — a)

Definition IV.1.12 We say that the non-zero polynomial P (x) can be factorized by (x — a)
or even P (x)is divisible by (x — a) if there exists a polynomial Q(x) such that

P (x) = (x —a)Q(x).
Theorem 1V.1.13 The polynomial P (x) admits the number a as root if and only if P (x) is divisible by (x — a).

Proof : Using the Euclidean division of P (x) by (x - a) we write P (x) = (x - a)Q(x)+ R(x)
with deg(R) = 0, Therefore R (x) is a real number and it is worth P(a).

Corollary IV.1.14 if the polynomial P (x) has k distinct roots a1, az, -+, ak then P (X) is divisible
by (x —ai)(x —az) -+ (X — a)
Proof : if a1 isthe root of P (x), we canwrite P (X) = (X —a1)P1(X); since a> # ais the root
of P (x) itis also the root of P1(Xx) andwehave P;(X) = (X —az)P2(x) Hence,

P (x) = (x —a1)P1(X) = (x —a1)(x —az2)P2(x). And we continue the process.

Corollary 1V.1.15 A polynomial in R[X] of degree n has at most n distinct roots.

.2 Fational fractions in R[X]

2.1 Definition of rational fractions
Rational functions are to polynomials what fractions are to integers.

Definition IV.2.1 The function f (X) is a rational function if there exist two polynomials P (x) and

Q(X) prime among them such that :

_P®X
9= Q0
And we have : deg(f) = deg(P) —deg(Q).

As with any fraction, the top (the polynomial P (x)) is called the numerator and the bottom (the
polynomial Q(x)) the denominator.

Exemples :
— The rational fraction defined for all x by:
P(X) _ 2x?-5x+5
Q(x) X+3

has degreel =2 -1.
— The rational fraction defined for all x by:

P(x) _ 2x

Q(x) x+1

Has degree 0 =1 - 1.



2x2—4x+5+ 2x _ 4x®+2x2-5x+15
X2+ 1 X +3 x3 +3x2+x+ 3

Its degree is worth 0 = 3-3.

Theorem 1V.2.2 Any rational fraction is written uniquely as the sum of a polynomial (called

integer part) and simple elements (called polar part) whose type is determined by determined by the
denominator of the rational fraction that we decompose.

2.2 Whole part of a rational fraction

Theorem 1V.2.3 Consider two polynomials P (x) of degree m and Q(x) of degree n with m 2
n. Then, for all x such that Q(x) /= 0, we can write :

P (x)
5 = E(x) +
Q(x) Q(x)
where E(x) is the quotient of the Euclidean division of P (x) by Q(x) of degree m — n, R(x) is the
rest, and R(X) is a rational fraction. The polynomial E(X) est dit partie entiere de P (x).

Q(x) Q(x)

R(X)

Exemple :

. . . 5x* + 3x + 2
Consider the rational fraction _

Noting that 1 is not the root of the numerator, we
X2 _2x+1

deduces that the polynomials are coprime. For x # 1, we have :

5x* + O0x® + O0x2 + 3x + 2 x2

- 2X  + 1
- Bx* + 10x® - 5x? 52 + 10x + 15
10x3 - 5Bx2 + 3x + 2
- 10x® + 20x2 - 10x
15x2 - Ix + 2
- 15x2 + 30x - 15
23x - 13
Also,
5zt + 3z 42 ) 23z — 13
oY v T e 1 154+ —
P 5x° + 10x + 5+x2—2x+1

2.2 Polar part of a rational fraction

Proposition 1V.2.4 Let P(X) be a rational fraction and let it have a root 3 of Q(x) of
multiplicity Qx)

m. Let us write Q(X) = (x—a)MQ1(x) with Q1(a) 0. here exists a unique decomposition in the
form: P(x) _ Ax) | Bl)
Q) (z—a)™ Qi(z)’
with A(x) and B(x) two p polynomials, A(x) being such that deg(A) < m.The fraction

A(x)
(x-a)m
The fraction A(x) is called the polar part of the rational fraction.
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