Numerical function of a real variable numerical function of a real variable

1. Set of Real Numbers

□ Algebraic order and operations

The set R with the relation "less than or equal" is a totally ordered set. Furthermore, we have the following property: If x, y and z are three real numbers, then

 $x \le y \iff x + z \le y + z$ if z > 0 $x \le y \iff xz \le yz$ if z < 0 $x \le y \iff xz \ge yz$

 \Box Set $\overline{\mathbb{R}}$

We call $\overline{\mathbb{R}}$ the set R to which we add the two symbols $+\infty$ and $-\infty$. Let :

$$\overline{\mathbf{R}} = \mathbf{R} \cup \{+\infty\} \cup \{-\infty\}.$$

We extend to \overline{R} addition, multiplication and order relation of R as follows:

- For $l \in \mathbb{R}$ we pose:

$$\begin{split} l+(+\infty) &= +\infty, & -(+\infty) = -\infty, & (+\infty) + (+\infty) = +\infty \\ l+(-\infty) &= -\infty, & -(-\infty) = +\infty, & (-\infty) + (-\infty) = -\infty, & -\infty < l < +\infty. \end{split}$$

- For $l \in \mathbb{R}^*$ we pose :

$$\ell \times (+\infty) = \begin{cases} +\infty & \text{si } \ell > 0 \\ -\infty & \text{si } \ell < 0. \end{cases} \qquad \ell \times (-\infty) = \begin{cases} -\infty & \text{si } \ell > 0 & (+\infty) \times (+\infty) = +\infty \\ +\infty & \text{si } \ell < 0. & (+\infty) \times (-\infty) = -\infty \end{cases}$$

Despite everything, certain expressions are not defined:

 $0 \times (+\infty)$, $0 \times (-\infty)$, $(+\infty) + (-\infty)$.

These expressions are called indeterminate forms.

□ Set Intervals R

Let a and b be two elements of R such as a < b. We call open interval of ends a and b the subset of R denoted]*a*, *b*[defined by:

$$]a, b[= \{ x \in \mathbb{R} \mid a < x < b \}$$

Let a and b be two real numbers such that $a \le b$. We call closed interval of endpoints a and b the subset of R denoted [*a*, *b*] defined by:

$$[a, b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$$

If a and b two real numbers such that $a \le b$, we similarly define the half-open interval on the right (resp. on the left) of ends a and b by:

$$[a, b] = \{ x \in \mathbb{R} \mid a \le x < b \}$$
 (resp. $[a, b] = \{ x \in \mathbb{R} \mid a < x \le b \}$)

Let a be a real number. Any interval of type is called an open interval with center

 $]a - \varepsilon, a + \varepsilon[$

or ε denotes a strictly positive real number. Finally, we pose:

$$[a, +\infty[= \{ x \in \mathbb{R} \mid x \ge a \}, \qquad]-\infty, a] = \{ x \in \mathbb{R} \mid x \le a \}$$
$$]a, +\infty[= \{ x \in \mathbb{R} \mid x > a \}, \qquad]-\infty, a[= \{ x \in \mathbb{R} \mid x < a \}.$$

□ Absolute value

Definition 1.1 Let x be a real number. The absolute value of x is the positive number, denoted |x|, *defined by:*

$$|x| = \sup\{x, \neg x\}$$

It immediately follows from the definition that:

$$\forall x \in \mathbb{R}$$
 : $|x| \ge 0, |x| = |-x|, |x| \ge x.$

Proposition 1.1 Let x and y be two real numbers, we have: |xy| = |x||y|• $|x + y| \le |x| + |y|$ (triangular inequality)

□ Neighborhoods

Definition 1.2 Let x_0 be a real number. We call fundamental neighborhood of x_0 any open interval not empty with center x_0 .

We notice $V_{\varepsilon}(x_0)$ the fundamental neighborhood of x of radius ε ($\varepsilon > 0$) :

$$V_{\varepsilon}(x_0) = \{x \in \mathbb{R} : x_0 - \varepsilon < x < x_0 + \varepsilon\} = \{x \in \mathbb{R} : |x_0 - x| < \varepsilon\}$$

$$\xrightarrow[x_0 - \varepsilon]{} x_0 - \varepsilon \qquad x_0 + \varepsilon$$

Definition 1.3 We call neighborhood of a real number x0 any part of R which contains a fundamental neighborhood of x.

Definition 1.4 We call the neighborhood of $+\infty$ resp. $-\infty$ any part of *R* containing an interval of the form]*a*, $+\infty$ [resp. $]-\infty$, *a*[or $a \in \mathbb{R}$.