Exercise 1.1

Which of the following are well formed statements (propositions)?

1. $\forall P Q$
2. $(\overline{(P \rightarrow(Q \wedge P))})$
3. $\overline{P \rightarrow(Q=P)}$
4. $(\forall(q \vee p))$
5. $(P \cap \bar{Q}) \cup(Q \rightarrow R)$
6. $P \bar{R}$

Exercise 1.2

Construct the truth table of $(F \cup G) \cap \overline{(F \cap G)}$.

Exercise 1.3

Use the truth tables method to determine whether $(P \rightarrow Q) \cup(P \rightarrow \bar{Q})$ is valid (true).

Exercise 1.4

Which of the following statements are true, which are false, and why?
a. $(2<3)$ et (2 divise 4$)$
b. $(2<3)$ et (2 divise 5)
c. $(2<3)$ ou (2 divise 5$)$

Exercice 1.5

Complete the dotted lines with the appropriate logical operator: $\Leftrightarrow, \Leftarrow, \Rightarrow$

1. $\forall x \in R: x^{2}=4 \quad \ldots x=2$
2. $\forall z \in C: z=z \ldots z \in R$
3. $\forall x \geq 0: x^{2}=1 \ldots x=1$

Exercise 1.6

Consider the following four assertions:
a. $\exists x \in R, \forall y \in R: x+y>0$
b. $\forall x \in R, \exists y \in R: x+y>0$
c. $\forall x \in R, \forall y \in R: x+y>0$
d. $\exists x \in R, \forall y \in R: y 2>x$

1. Are statements $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ true or false?
2. Give their negation.

Exercice 1.7

Show that the product of two odd integers is odd.

Exercise 1.8

1. Show that if n^{2} is even, then n is even, for n an integer.
2. show that $\sqrt{2}$ is irrational.

Hint: Suppose by contradiction that $\sqrt{2}$ is rational, that is $\sqrt{2}=\frac{m}{n}$, for m and n integers with no common factor. Show that m has to be even, that is $\mathrm{m}=2 \mathrm{k}$. Compute m^{2}, and deduce that n has to be even too, with is a contradiction

Exercice 1.9

Let the sequence $\left(x_{n}\right) n \in N$ be defined by

$$
x_{0}=4, \quad \text { and } x_{n+1}=\frac{2 x_{n}^{2}-3}{x_{n}+2}
$$

Show that: $\forall \mathrm{n} \in \mathrm{N}: x_{n}>3$

Exercice 1.10

Prove that: $1^{2}+2^{2}+3^{2}+4^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1), \quad \forall n \in N^{*}$

