Abdelhafid Boussouf University Centre of Mila,

Institute of Sciences and Technology

Department of Technical sciences

Series N°2: Kinematics of material point (part 2)

Exercise 1

An airplane A flies toward N at $300 \ mh^{-1}$ relative to the ground. At the same time, another plane B flies in the direction N 60° W at $200 \ mh^{-1}$ relative to the ground. Find the velocity of A relative to B and of B relative to A.

Exercise 2

A car passes in front of a building of height h. When the car is

exactly next to the building, a ball falls from the top of the building. We would like to study the movement of the ball relative to the car (how the driver register the movement of the).

- 1- Determine the absolute and relative frames.
- 2- Find the acceleration, velocity, and the trajectory of the ball with respect to the driver for the two cases:
 - a. The car moves with constant velocity.
 - b. The car moves with a constant acceleration without initial velocity (the car start moves with acceleration).

Exercise 3

A circle of radius 'a' can rotate around the point (o) on its circumference (figure below). When the circle begins to rotate, a point M begins to move along its circumference with the same angular velocity as the circle rotates about the point o.

- 1- Write the absolute position \vec{r} in the relative frame $(o, \vec{i}, \vec{j}, \vec{k})$.
- 2- Write the absolute velocity \vec{v}_a in the relative frame $(o, \vec{i}, \vec{j}, \vec{k})$.
- 3- Write the absolute acceleration \vec{a}_a in the relative frame $(o, \vec{i}, \vec{j}, \vec{k})$.

1

Exercise 4

A rod begins to move along the x-axis with a linear velocity \vec{v}_{oo} and rotates about its end with a constant angular velocity \vec{w} . At the same time, a point M moves along the rod so that,

 $\|\vec{r}\| = \alpha(t)$ (see the figure). Find:

- 1- The formula of $\vec{r}_{0\dot{0}}$ on $(0, \vec{\iota}, \vec{j}, \vec{k})$.
- 2- The formula of \vec{r} on $(0, \vec{i}, \vec{j}, \vec{k})$.
- 3- The formula of \vec{v}_r and \vec{v}_t on $(0, \vec{i}, \vec{j}, \vec{k})$, then deduce the absolute velocity \vec{v}_a .
- 4- The formula of \vec{a}_r , \vec{a}_t and \vec{a}_c on $(0, \vec{i}, \vec{j}, \vec{k})$, then deduce the absolute acceleration \vec{a}_a .

