Chapter 1 Mathematical introduction

Chapter 2

Kinematics of material point

2.1 Introduction

o Kinematics is a branch of mechanics that studies the movement of particles without
taking into account the causes of this movement.
o On the other hand, kinematics does not care about forces that cause particle movement.
2. 2 Variables of Motion
Kinematics aims to provide a description of variables of motion (motion elements):
o the spatial position of particles,
o velocity, and
o acceleration.
2. 2. 1 Vector position

o Vector position is a vector, which

connect the origin of reference to My Path
the position of the material point M
in a given time. -
g Fl 4 ms
73
0©

2. 2. 2 Displacement vector

We define the displacement vector from the point m,to the
point m; as the difference between the position vector m, and
the position vector 7;. We can expect that the displacement

vector will always be less than or equal to the real distance

traveled by the material path.
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2.2. 3 Velocity
e Average velocity : We define the average velocity of material point during the time

interval At as the displacement vector of the particle divided by that time interval,

5 =
Um =71
Note that: mq

- The direction of average velocity is same as

the direction vector displacement. z);:
o > m
- The magnitude of the average velocity is £} 2
called speed.
Ty

e Instantaneous velocity :

Instantaneous velocity is the speed at a defined
point. We can start from the definition of the average
velocity between two points and each time we bring
the point m closer to the point m1 until mz coincides
with m1. This means that the traveling time from
point m1 to point m2 is too small. It is easy to see that
the instantaneous velocity vector is tangent to the

trajectory at this point. So,

v=Ilim%,,, v=Ilim—
t—0 t—0 At o
0
- dr
V=—
dt

2.2. 4 Acceleration
e Average Acceleration: We define the average acceleration of material point during the
time interval At as the difference between the velocity vectors of the particle divided by

that time interval,

5 AD
Ym = At
Note that:

- The average acceleration is a vector quantity directed along Av.
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e Instantaneous acceleration :
Instantaneous acceleration is the acceleration at a defined point. The instantaneous

. S . e . AV
acceleration a is defined as the limiting value of the ratio A—’: when At approaches to the zero.

So,
- - - M A’l_j
a=Ilimy,, a=Ilim—
t—0 t—0 At
> dv
a=—
dt

Concavity of the

¢

2. 3. Variables (Elements) of motion in the different references.
2. 3. 1 Cartesian coordinate system.

2. 3. 2. Vector position
If the particle moves on one axis (0x)

OM = ||oM|| x T 0 s N
7= x(t) T x
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=)

X/
°e

If the particle moves on the plane, the vector

AdAm
position is given by its two coordinates, x 2°
7 =x(t)T+ y(t)l )
L
% Vector in space can be written with respect to its
three coordinates as; M

OM = x(t)i+ y(t)] + 2(D)k \/\/

% The coordinates x(t),y(t),and z(t) are called
the time equations of the movement.

% The relation between the coordinates x, y and z is called the trajectory equation.

2. 3. 3. Velocity
The vector velocity is the derivative of the position vector with respect to time,

A7 dx(t), dy(t). da(t)
TP e Pl

dx(t) _ .

We represent the derivative with respect to time by dot (point) upon the function X

and then we can write

—)_d_r_z_-—) O d ._>
v—dt—xl+y]+zk

I8l = V&2 +57 + 22

2. 3. 4. Acceleration

a= % =Xl + y] + 7k, the magnitude of the acceleration is ||d|| = /X% + y? + Z2.
Notes:

> >

v.a >0, the movement is accelerated
If {v~.a” <0, the movement is deccelerated.
v_.a” =0, the movementis uniforme

Movement with a constant acceleration
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We have a = constante,

t
dv Y
_=a—>d17=adt—>fdv=afdt
dt v

to

0

v=a(t—ty) + vy

dx X t
—=v »>dx =vdt - f dx=fvdt
dt X ¢

0

0

X t
f dx = | (a(t —ty) + vy)dt
X0 to

1
X =§ a(t_to)z +v0(t—t0) +x0

Useful relation

We have
dv = adt
Multiplying the two terms by v we obtain,

vdv = avdt

Also, we have
dx
YT
By replacement,
vdv = ad—xdt
dt
vdv = adx

v X
J vdv = af dx
v Xo

0

(v? —v3) = 2a(x — x,)

Example 1:
Let we study an object which falling freely from a high h,

The movement is one-dimensional under the acceleration of the

«Q,

gravity of earth
a = g = constante, g = % > dv = gdt, f;; dv = gftt_; dt

t0=0

(0 —vy) = g(t —t,), At the initial time ¢ = ¢, {v — o
-

v =gt
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Y=tz 2y =g f 00
(v YO)—Za(t tO)'t_to{y():—h’

y—(-h) =:at?, Sy=zat’—h

dv . (v ——aft
a = —g = constante, a = — — dv = adt; fvo dv=—g fto dt

t0=0

(v — vy) = —g(t — t,), At the initial time ¢ = to{ -9
vy =0

vy Lt 2y o, [to=0
(v =y0) = —359( to)-t—to{y0:h1

y—hz—égtz, —>y=—%gt2+h

Example 2:
Consider the time equation of a material point,

x(t) = §t2, y(t) =t2—1, z(t) = 0.

7= %t2?+ (t2—=1)]. Then B=t+2t] > |||l =5t
a=1+7, then|dl|l=v1+1=2

v.a= @+ ty).(+)) =t > 0, the movement is accelerated.

To find the trajectory (path) we replace t by x in the y time equation;

t=x(t),-» y() = %xz. The path is a parabola.

Example 3

Let Consider a particle m moves on xy plane with a constant acceleration @(°) and at the initial

time t, = 0 the vector velocity is given by ¥ (zgx) and the vector position is given by #(7).
y
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_ a=aj
Attime t, 1§ - S .
UO = onl + on]

(_i = on?'*' on]_)

- va - voxt
v 7|1
at + vy 5at? + voyt

If o is the angle that the velocity vector ¥, makes with the x axis and v, is the norm of this
velocity vector, we can still write ¥, = vycos(0)T + v,sin(6))
We can find the trajectory by writing the time expression from x(t) and replacing it in y(t)

equation.
X

t=———
vocos(6)
And then

1 x?

=—a————+t
2% Vg, cos? () ang(@)x

y

If @ = —gj, we find ourselves in the projectile case.

AZ
iz
. Height
vO
u A a y
0 : X
et The range >
ty La porree a
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2. 1 Polar coordinate system

Polar coordinates are used to study the motion of a material
point in two dimensions. The location of a point in this
coordinates system is determined by its distance from a fixed
point at the center of the coordinate space (called the pole) and
by the measurement of the angle formed by a fixed line (the
polar axis, corresponding to the x-axis in Cartesian
coordinates) and a line from the pole through the given point.
The base of this coordinates system is (i, ig)

i, : is directed form the origin towards the material point
position.

Ug: is directed in the direction of increase of o.

3. 1. 2. Vector position

The vector position is given by # = oM = pi,.

Relation between Cartesian and polar coordinates.

7 = pii, = pcos(8)T + psin(h))].
x = p cos(0) p=JxZ+y2
_y
y = p cos(6) tang(0) = *
Relation between Cartesian and polar bases
U, = cos(8) T+ sin(0) j
Ug = —sins(0) T+ cos(0)]
Also we can write
U= cos(8) 1, — sin(0) iy

J = sin(0) u, + cos(8) iy

3. 1. 3. Velocity
d

¥ =—0M =7 = pi, + pii,

dt

p
. [V
‘ [
pote Pole axis
u
A
p
y | 0
0
X

i, changes its direction with time, so it derivative with respect to time is not equal to zero.

i, = cos(0)T+sin(0)] 3 l_l;p =0 (—sin(0) T+ cos(6))) : ﬁ;p = 0y
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g = —sin(0) T+ cos(0)] Sty = 6 (— cos(6) T —sin(8))) : Uy = —éﬁp

Acceleration
- dﬁ e « A « A n—> V2>
a= @ pu, + plug + plug + pbuy — pb-u,

-

(6 — PO, + (200 + pb)ily

i=— =

dt

ag = (290 + pb)

I — 2
l|lall = ’a,z, +ag
Cylindrical coordinates

Cylindrical coordinate are three dimensions coordinates
system used for motion which have cylindrical symmetry.

{ ap = (P _péz)

Velocity

-

Acceleration
dv N - sy, .7
(6 — p62)u, + (2p0g + pb)iiy + zk

a :E:
i = (5 - p07)
ag = (2p01y + pb)
a, =7

lall = Ja,?+ag?+ a2
1)
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Curvilinear coordinates and curvilinear abscissa

Consider a point m moves on a curvilinear path (fig). The distance between two point on the

path s(t) (the length of arc between traveled between t; and t,) s(ti)
is called curvilinear abscissa. s gives the position of the particle ti

as measured by the displacement along the curve. As in the

~
Il
]

rectilinear case, s may be positive or negative, depending on

which side of O the particle is.
The vector position is # = oM

The displacement vector of point m is characterized by A7 = #, — #, = OM, — OM,

Velocity vector

When the particle moves from M1 to My, The length of arc AB represents the displacement As

along the path. As it is mentioned before, the average vector

velocity is given by #,, = 2—? fs
Multiplying and dividing the last equation by As (the length 4
1

of the arc M, M, ), we obtain

. AFAs (AS) AF 7

=— oS |—]||—

Ym = atas - \at)\as ar

The instantaneous velocity is obtained when {At - O, SO
As - 0

o= (&)%)

o (g) . Is the variation of the length of the curvilinear abscissa with respect to the time.

Then (g) = s represents the speed of M (magnitude of velocity).

o (%) : When ds is too small the magnitude of [|d7I| = ds. Then, (%) represents the
ds ds

vector unity tangent to the path at the point m.

> dar
e We can write i, = (d—Z)

1_7) = .S"l_,l.)t
Acceleration
The acceleration of the particle at time t is defined as,
dv

i=—
dt

> d= E(S'ﬁt)

Dr:S. AGULMIT
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Because the unit vector of the tangent to the path changes its direction with respect to time, its
derivative with respect to time is not equal to zero.
d = 51, + 51,
U, =7

Let us introduce the unit vector i,,, normal to the curve and directed toward the concave side.
Letting 6 be the angle that the tangent to the curve at M makes with the X-axis, we may write
U, = cos(6) 7T —sin(0)].
U, = —sins(0) T — cos(0)]. T

i, = —0sin(8) T — 6 cos(6) T —

~
~

i, = O(—sin(0) T — cos(6) ) - —

l_it = Qﬁn

Finely, we can write,
d=3u, +3$01,.

From the curve, we can deduce that s =

RO — $=RH
.S
=%
I T
a=Su; + R Un
Note that, v = §
> .- vz -
a=vu; + ?un
a = a s + a,l,
a; = divl the tangent acceleration component
E

a, = = the normal acceleration component

v? = ||9]|?
Note that : v =19l -4 . dll¥ll
v =
dt

The magnitude of the acceleration is given by,

lall = /a? +ag

11
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% a,. is proportional to the time rate of change of the magnitude of the velocity; so the
tangent component gives how the magnitude of velocity is changing with respect to the

time.

X/
°e

a,: 1s associated with the change in direction of the velocity, because it corresponds to

du .- -
—tand itis always positive.

Path of
P ~a particle

As we said before ;

d; > 0, the movement is accelerated
d, < 0, the movement is deccelerated

V.
If {v.
R . .
V. 0, the movement is uniforme

dy

> If the curvilinear motion is uniform ¥.d, = 0 - a, = 0 (the magnitude of the velocity
remains constant), v constant, so that no tangential acceleration. In this case, we say that
the acceleration is central (centripetal).

» The normal acceleration disappears (a, = 0) only in the case when the radius of
curvature is infinite (R - +o0). For that, the motion is rectilinear (one dimension
motion).

» If the radius of curvature is constant with respect to time (R = c), the motion is called

circular.

12
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Example
A disk D (Fig.) is rotating freely about its horizontal axis. A cord is
wrapped around the outer circumference of the disk, and a body M,

attached to the cord, falls under the action of gravity. The motion of M

is uniformly accelerated but its acceleration is less than that due to M

gravity. At to the velocity of body A is 0.04 m s, and 2 s later M has

fallen 0.2 m. Find the tangential and normal accelerations, at any M

instant, of any point on the circumference (border) of the disk.

Solution:
Given that the origin of coordinates is at the position t = 0, the equation of the uniformly

accelerated motion of M is x = %at2 + v,t. But we know that v, = 0.04m™1. Thus

1
X = Eatz + 0.04t

We know that at t = 2 s, the body a distance 0.2 m. by replacing the values of t and x in
equation, we deduce the acceleration, a = 0.06 ms~2. The time equation will be written as,

x = 0.03t% + 0.04t

Therefore the velocity of M is v = % = 0.06t + 0.04
The distance makes by the body when it moving down equal to the arc made by any point on
the circumference of the disk. Then, the tangential acceleration of the point A is thus the same

as the acceleration of the body M.

dv
v=0.06t+0.04>a=—
dt

a(M) = a, = 0.06ms—?
2
We have a, = —and R =0.1m.

_ (0.06t + 0.04)?
N 0.1

a, = 0.036t% + 0.048t + 0.016ms 2

an

The total acceleration of point A is thus ||d|| = v/ a? + a2

13
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Circular motion

Uniform Circular motion and Angular Velocity
Let us now consider the special case in which the path is a circle
(circular motion). The velocity v, being tangent to the circle and
is perpendicular to the radius R = CA. When we measure
distances along the circumference of the circle from the origin

0, we have,

s = RO

ds  d(R6)
=— >SS =
dt dt

v
v= RY v= R6
dt
6 = w : represent the angular velocity, which measured in rads~1 , the relation between the
tangent and the angular velocities is v = wR
Instead of studding the curvilinear abscissa s with respect to time, we can only study 6 with
respect to time because R is constant s(t) = RO(t).

dég
w=— - df =wdt
dt

(7] t
do =w | dt -  0(t) =w(t—ty) + 6,

6o to

In this case (w = constant), the motion is periodic and the particle passes through each point
of the circle at regular intervals of time.

Period: The period T(s) is the time required for a complete one turn (one revolution), the
complete turn is s = 2mR. Because the movement is uniform, the distance is equal to speed

multiplied by time.

2nR  2nR
s=vl > T=—=—
v WR
21
T = oW : is the angular velocity.

Frequency: The frequency f is the number of revolutions per unit time. Let's assume that during

time t, the particle makes an N turn, then we can write t = NT. In unit time t=1s the number of

turnis f = % Then the frequency is written as,
=_g¢1
f 7 ST

14
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The angular velocity can be expressed as a vector (Fig.)

whose direction is perpendicular to the plane of motion in I zZ .
the sense of advance of a right-handed screw rotated in the %‘): @ %
same sense as the particle moves. So, W = wk &>
From the figure, we can deduce, R = rsin(y).
Because v = Rw, We can write v = wrsin(y),

v = wrsin(y)

wrsin(y) is writen as ||W||||7||sin(a)
W =wk ’
7 = —Ru,
a=0, becausev L7

-

Finely we can write, ¥ = War

This result can be generalized on any vector in rotational movement with an angular velocity

w; the derivative of this vector with respect to time is expressed by

V =wal

Accelerated Circular Motion: Angular Acceleration

When the angular velocity of a particle changes with time, the angular acceleration is defined

by the vector ¢ = ‘i—‘f - @ = Wk +w %, k doesn’t change with respect to time.
5 Wk . d®6
=wk - =W = —
% % dt2

w t
f dw = ¢ | dt - w(t) =@t —ty) +w
w

0 to

6 t
%]

o to

1
o(t) = E‘P(t —to)? + wo(t —ty) + 6

15
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As we say before, the acceleration is written

by

2
vZ N
a=vu; + = Un = agi; + Ay,
dv dw

Tdt dt
v?  (WR)?

=R R

{at - R(p
a, = Rw?

a;

Representation of velocity, Tangential and
normal acceleration.

Note in uniform circular motion (no angular acceleration ¢ = 0) there is no tangential

acceleration, but there is still a normal or centripetal acceleration due to the change in the

direction of the velocity. We have w = Cst

dv  dwar) _ dr _
=—= = WA— = WAD

ET At T dt dt
We have ¥ = wav, then we can write

5
a

d; = WA(WAD)

16
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Il. Relative motion

Motion is a relative concept, it must be always referred to a specific frame of reference chosen
by the observer.

An observer on the earth considered himself in rest. But someone who is on the moon look him
in circular motion.

Notion of Absolute and relative frame

The concept of absolute or relative frame is changing from one observer to another.

Since different observers may use different frames of references, it is important to know how
observations made by different observers are related.

For the example below, we consider that the observer on the street is the absolute frame of
reference, and then the two frames related to the cars are relative to the observer on the street

and are relative to each other.

v

YBA

\ 4
v

Fig . Notion of relative motion

74 is the vector position of car A for the absolute frame.
75 is the vector position of car B for the absolute frame.
Tga = Tg — T4: iS the vector position of car A for the A frame.

Typ = T4 — Ty is the vector position of car A for the A frame.

17
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Let consider that the two cars move with constant velocities with respect to the Absolut frame
(observer on the street), we ca write 7, = V,7, and 75 = VgJ .

The vector position of B with respect to the car A is 75y = 75 — 74.

FBA = VAti)_ VBt_]

{ xBA = VAt
Ypa = —Vpt
We canfindof t = VixBA so the motion of B with respect to the A is linear given yg, = — Z—A t.
A B

In the same way, the motion of A with R

- Vg Ve LS
respect to B is linear.y, g = — -t - Uga

A
Special cases: (cars move on same way) ¥ e
- On the same direction A

?A = VAt? N N
3 Lo T1pa = (Vg — Vy)tL.
{TB = Vgt 4 = (Vp 4)

ﬁBA = Vg — VA)? I ||773A|| = |Vg = V4al,

the speed of B with respect to A is equals to the difference between the two velocities with

respect to the absolute observer.

- On the opposite direction .

r T Uga
Ty =Vytt N . —
{_’A A o= (Vg + VIt N
TB = _VBtl ﬁA B
7 U Y — T R
Vga = (VB + VA)l - ||UBA|| = Vg + Vy, @l_.,:}@j

the speed of B with respect to A is equals

to the sum of the two velocities with

respect to the absolute observer.

Relative frame in translation movement

Let consider a situation looks like the previous situation and consider that an observer stand on
the street and a car travel with a speed V. Inside this car there something falls down. We want
to study the movement of this object with respect to the passenger of car and with respect to
observer on the street. We can represent this situation by two frames one is considered absolute
which attached to the observer on the street and the other one is considered relative attached to

the car.

18
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v

]

- — V‘
0 J Yoo 0

Finnre
- The car moves with a constant velocity v,, we can write 7,5 = v,,1.
- The vector position of the point M with respect to R is 7
- The vector position of point M with respect to R is the sum of 7,; and 7,
F=ty+7

The velocity of M with respect to R is Z—f
dr\ _ (4 | dr
dt) ~— \ dt dt
R R R
- d?()d dT'_‘)
Yo = ( dt ) * (E)
R R

<d?06> _ Pos Do, Do di dj dk
R

k —— g L
dt dar " Tar ) T Tae +x°°dt+y""dt+z"°dt

Because the frame (0,7, 7, E), iIs in rest, the derivative of their unit vectors with respect to time

. di _dj _dk _ =
isequal to zero, = = Z = = =10
dt dt dt

5 (dfoé) — dxod-)_l_ dyod ->+ dzod E
R

Voo dt T TPT:

dr\ _di. dy. die d§+ dj+ dk
dtR de ' g Tag "t T Yoo qp T Yoo g T %00 gy

Because the frame, (o, ff k) moving but does not changing their directions, then the derivative

: : : L di _ dj _ dk _ =
of theirs units vectors with respect to time is equal to zero, , d—; = d—i == 0.

19
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L (dr _dis dy. die dr
r=\ae) Tact T a Tac T \ae )
R R

The absolute velocity is the sum of the velocity of relative frame respecting to the absolute

frame and the velocity of the point respecting to the relative frame.
Vg = Voo + Uy
U,: absolut velocity, the velocity of M recorded by the observer O

Uoo: training velocity, the velocity of O recorded by the observer O
v,: relative velocity, the velocity of M recorded by the observer O

Relative frame in rotational movement
Let us now consider two observers O and O

rotating relative to each other but with no relative

=
v
Sl

translational motion. For simplicity, let us
consider that the two frames are attached to itself \\

with a common origin.

- The frame (0,77, k) does not move.

- The frame (o, ff k) rotates with an angular

velocity w. That means that the observer on

(0,7,7,k) sees (o,1,],k) in rotational motion

with an angular velocity w.

- The observer on (o, ff k) see himself in rest.
The position vector 7 of the particle M referred to (o, 7,7, k) is
7 =xi+y]+zk

Therefore the velocity of particle referred to R is,

. (dr _dxé_l_dy%_l_dzz
Va = dtR_dtl dt’ = dt

The position vector 7 of the particle M referred to (o,f,f, k) is

-

=2 +9] + 2k

Therefore the velocity of particle referred to (o, f] k) is,

. [arf _dxs dys dzx
r=\ae) Tact T ad T
R

20
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dr\  [(dFy s dr
at) — \ dt dt
R R R

df'oé) _ =2 _n
( ), = Vs = 0, then

d7 _(d;‘c7+dy?+dz‘z)
dtR_ ac T add Tact,

(d—i) = W, (d—j) = WaJ and (ﬂ) = wak, where w is rotating velocity of the relative
R R R

dF - - N W — X — Y
(—) =V, = U, + x(WAL) +y (WA)) + 2 (WAk)
By = By + WaRD) + (WrY ) + (Wazk)
B, =B + WAL+ 9] + 2k)
By = By + WAT
This expression gives the relation between the velocities ¥, and v, of M, as recorded by

observers 0 and 0' in relative rotational motion of.

Acceleration

The acceleration recorded by observers 0 is called absolute acceleration,

i\ (d . ) _[(dF) | (d@ar)
(dt) _<E(UT+WM)> _<dt> +< dt >
R R R

R

Because

21
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From the result above;

dv,\ _ (dv, A 4 dr _ dr AR
o) =\ gp ) T, and (| ={— ‘ WAT
R R R

R

By replacing,

dv, s s 2
T =a, + WAY, + WA(V, + WAT)
R
Gq = @, + 2(WAD, ) + WA(WAT)
- Theterm, 2(wat, ), is called the Coriolis acceleration.

- The term, wa(Wa7), is corresponding to a centripetal acceleration.

General motion of the relative frame
Let us now consider the relative frame makes translation and rotational motion referring to the
absolute frame.

Velocity

<d?) _ (d?0@> . <d$>
dt] —\ dt dt
R R R

- - — 3
Vg = Vs + Uy + WAT
Vg = Voy + WAY + V)
-
Uy + WAT = U, : training speed

B, =, + b,

L (AP (dD,, dv, d(War)
aa_(dt>R_< dt >R+<dt>R+< dt |

Acceleration

22
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dvoo

,
dt
<d17r

_ -
= Ays

)

> = d, + (Wa,)
R

-

a
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a=

dt
L(

d(WaT)
oo + Gy + 2(WAB,) + WA(WAT)

{

) = WA(B, + War)
R

G = Gy + WA(WAT)
d. = 2(Wav,)

d, = d¢ + d, + d,
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