
CHAPTER 2: Stationary and quasi-stationary one-dimensional 

scattering 

1. Introduction 

The study of the transport of matter in any medium requires the understanding of the 

mechanisms allowing the description of matter transfer. Writing the material balance is the first 

step in this understanding. The resolution of differential equations from the material balance 

firstly allow the calculation of equipment. 

2. Material balance-Continuity equation 

In the previous chapter, we gave several definitions of mass flow. For simplicity, we will use 

the molar flux relative to a fixed reference Ni for a binary mixture. We will take the Z direction 

as a reference, thus: 

 

Combined flow = Molecular flow + convective flow 

This equation describes the diffusion of element A governed by the diffusion molecular and 

convective and can be solved by reasoning methods physical or chemical. 

3. Reminders on gradient operators and divergence of a vector 

We give the following expressions for the mathematical operators gradient and divergence in 

scalar coordinates in three-dimensional space. All these operators are constructed from the 

fundamental operator Nabla:  

In mathematics, the gradient is a vector representing the variation of a function in relation to 

the variation of its different parameters. In physics and analysis vector, the gradient is a vector 

quantity indicating the way in which a quantity physics varies in space. 

This equation describes the diffusion of element A governed by the diffusion molecular and 

convective and can be solved by reasoning methods physical or chemical. 

3. Reminders on gradient operators and divergence of a vector 

We give the following expressions for the mathematical operators gradient and divergence in 

scalar coordinates in three-dimensional space. All these operators are constructed from the 

fundamental operator Nabla: Ñ 

In mathematics, the gradient is a vector representing the variation of a function in relation to 

the variation of its different parameters. In physics and analysis vector, the gradient is a vector 

quantity indicating the way in which a quantity physics varies in space. 



 

The divergence operator is a linear differential operator of degree 1. 

In Cartesian coordinates, the divergence of a vector field  

for expression: 

 

4. Balance of the total mass on an element of fixed volume 

Consider a black box which represents industrial chemistry equipment. THE total mass 

balance on a volume element of this equipment considers that the mass total mass entering is 

equal to the total mass exiting this volume element. Given that chemical equipment involves 

chemical reactions that are responsible of the production or consumption of a chemical 

species in the volume considered but also from an accumulation of the latter in the same 

volume element, we have the material balance following total: 

 

Output = Input – Cumulative + Production 

From the moment the material balance has been established, it can be developed to obtain a 

continuity equation which reflects the principle of conservation of mass. 

The continuity equation can be presented in several forms, the most commonly used is of the 

following form: 

 

5. Balance of the mass of a constituent i on an element of fixed volume 

Consider an elementary volume of dimensions Δx, Δy, Δz, figure 3.1. In applying the material 

balance for constituent A we can define the mass flow rates entering and leaving this volume 

element through its different faces: 



Mass flow of A in the x direction: 

- position x (input): (nAx)x Δy Δz, which corresponds to: MA (NAx)x Δy Δz. 

- position x + Δx (output): (nAx)x+Δx Δy Δz, which corresponds to: MA (NAx) x+Δx Δy Δz. 

With MA the molecular mass of element A and (NAx) is the flow in the x direction and 

(NAx)x 

its value at point x. 

Mass flow of A in the y direction: 

- position y (input): (nAy)y Δx Δz, which corresponds to: MA (NAy)y Δx Δz. 

- position y + Δy (output): (nAy)y+Δy Δx Δz, which corresponds to: MA (NAy) y+Δy Δx Δz. 

Mass flow rate of A in z direction: 

- position z (input): (nAz)z Δx Δy, which corresponds to: MA (NAz)z Δx Δy. 

- position z + Δz (output): (nAz)z+Δz Δx Δy, which corresponds to: MA (NAz)z+Δz Δx Δy. 

 

Figure 3.1. Volume element of dimensions Δx, Δy, Δz. 

Thus, the mass flow of element A entering the volume element through the three faces is: 

(nAx)x Δy Δz + (nAy)y Δx Δz + (nAz)z Δx Δy. 

The mass flow of element A exiting the volume element through the three east faces: 

(nAx)x+Δx Δy Δz + (nAy)y+Δyz Δx Δz + (nAz)z+Δz Δx Δy. 

Given that the total mass of A in this volume is ρA Δx Δy Δz, the expression for 

accumulation flow will be written as follows: 

 

The production of A in the volume element Δx Δy Δz can be done by reaction chemical, this 

can then take place according to two different mechanisms: 

a) Homogeneous reaction where the reaction rate can be written as follows: 



 
b) Heterogeneous reaction where the speed of the reaction on the surface of the catalyst 

can be expressed by a relation of the form: 

 
With in both cases: 

RA: reaction rate (moles.cm-3.s-1), 

K: reaction constant (s-1, if the reaction is of order 1), 

CA: concentration of A (mol.cm-3), 

n: exponent indicating the order of the reaction, 

NAz: Combined molar flux (moles.cm-2.s-1), 

K"n: Reaction constant based on reaction surface. 

Let us take the case where A is produced by homogeneous chemical reaction at a rate 

of 

reaction RA then the production rate of A is: 

MA RA Δx Δy Δz 

The material balance of A in this elementary volume is: 

 
By dividing by (Δx Δy Δz) and taking the limit when the three dimensions tend 

towards zero, we obtain: 

 
Dividing the equation by MA, we find 

 
6. Boundary conditions and initial conditions 

In order to solve the continuity equations, surface concentration or flow surface mass 

must be specified. In this case the boundary conditions can be of one of the following 

forms: 

∙NAZ = NA0. 

• NAZ / NBZ is given. 

• NBZ = 0 (B not diffusing). 

7. Diffusive transfer in steady state 

In steady state, the concentrations of species A and B do not depend on the 

time. Thus, the production and accumulation terms are zero. Equation becomes: 



 
And the equation becomes 

 
By replacing with the Fick equation; equation (3.1), assuming that A is a 

solute which diffuses through B while B is stationary then NBz = 0, we obtain 

 
It is common to assume that the total concentration is constant and that the fraction 

molar; xA is very small, so the global flux term is eliminated from the Fick equation. 

For diffusion along a single dimension (unidirectional) the expression of the flow 

molar as a function of distance, for different geometries, is given as follows: 

a) For a plane wall of thickness z2 - z1; 

 
b) For a hollow cylinder of inner radius r1 and outer radius r2 and a length L with a 

diffusion in the radial direction: 

 
c) For a hollow sphere of interior radius r1 and exterior r2 with diffusion in the 

radial direction; 

 
For the study of the phenomenon of transport of matter for a binary mixture (A,B) 

we proceed as follows: 

• Specification of the problem, 

• Make assumptions and explain mathematical simplifications using 

in relation to the assumptions made, 

• Write the continuity equation, 

• Simplify the continuity equation using the assumptions made, 

• We therefore obtain the flow of the species in consideration as a function of 

concentration gradient, 

• Replace the flux by the expression (concentration gradient) in the equation of 

continuity, 

• Solve the differential equation, 

• Use the boundary conditions for the integration constants, 

• Obtain the model representing the variation of the concentration or its 

distribution in depending on the direction considered. 



The two simple problems to study are: 

- The diffusion of an element A through another immobile element B, 

- Equimolar counter diffusion. 

7.1. Diffusion of a gas through a stagnant gas film 

In the figure below is described the phenomenon of diffusion of a compound A to 

through another immobile element B. 

In summary, let us be a vertical tube of small diameter which contains a liquid A 

of which the interface corresponds to the height z = z1. Liquid A begins to 

evaporate in the portion of the tube in which a gas B is contained. A current of gas 

B is sent to prevent gas A from moving and therefore displacing gas B outwards. 

The gas B is therefore kept in the tube all the time and behaves as if it is immobile. 

On the other hand, the gas B is sent to release A at its exit, consequently the 

concentration of A at the outlet is zero. 

 

Figure 3.2. Schematic representation of the diffusion of A through immobile B 

Assumptions 

a) B stationary 

b) Steady state CA does not depend on time, 

c) A single z direction, 

d) No chemical reaction, 

e) CA at the tube outlet, that is to say at z = z2 is zero, 

f) Element B is not absorbed by the liquid; the mole fraction of B in the liquid is 

nothing. 

g) Concentration of element A at the interface z = z1, 

Pt yA = P’A xA, thus xA = 1/ yA = P’A / Pt . 

With : 

P’A: vapor pressure of element A. 

yA: mole fraction of A at z = z2. 

xA: mole fraction of A at the interface. 

Simplifications 



 

a') B being immobile, therefore NBZ = 0. 

b') CA = constant; therefore
𝜕𝑐𝐴

𝜕𝑡
 = 0 

  c') NAx = NAy = 0 (no flow in the x and y directions). 

d') RA = 0; no chemical reaction. 

After simplifying the continuity equation we obtain: 

𝜕𝑁

𝜕𝑍
=0 so NAZ= constant 

By appealing to Fick's law; equation 

 

With NBz = 0, we have  

We find : 

 

We replace NAz by its value in: 

 

We arrive at a second degree differential equation. The concentration C is constant because 

the temperature and pressure are constant. We integrate a first once then a second time: 

First integration 

 

Second integration: 

 



Conditions to the limits : 

 

It remains to find the value of the constants k1 and k2. 

Subtracting equations (*) and (**) gives: 

 

From the equation resulting from the second integration 

 

We replace k1 and k2 by their value and we find after some rearrangements 

 

7.2. Equimolar diffusion 

Or two balloons connected by a tube blocked in the middle by a tap; Figure 3.4. Balloon A 

contains gas A and balloon B contains gas B. If at any point given, we remove the cap which 

separates the two gases A and B, there will be a mixture between A and B which, over time, 

will become uniform. However, if the same number of A's and B's move towards each other, 

i.e. opposite directions, we conclude that this is the phenomenon of equimolar counter-

diffusion. In in other words, the flow of B is equal to that of A in absolute value. 

 

Figure 3.4. Descriptive diagram of equimolar counter diffusion. 

 



Assumptions 

a) Against equimolar diffusion. 

b) No chemical reaction between A and B. 

c) A single direction of diffusion (z). 

d) Stable state (i.e. the study is not carried out when the tap is opened). 

 

The continuity equation in this case will be simplified as follows: 

 

So  

NAZ = constant 

By appealing to Fick's law; 

 

Who becomes 

 

Because the diffusion takes place in only one direction. By replacing with the simplification 

a'), we obtain : 

 

We obtain: 

 

This is the molar flux of element A as a function of concentration. we replace NAZ 

by its value in: 



 

We obtain  

 

It is a second degree differential equation of CA that we will have to integrate. 

After a first integration: 

 

And a second integration we obtain: 

 

This expression shows that the CA concentration varies linearly with z. We evaluate 

the integration constants K1 and K2 knowing the boundary conditions: 

 

After replacement, we find: 

 

By rearranging, it results 

 

 

 

 


