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Real Number Encodin

• Many applications require non-integer numbers. 

• There are several ways to represent these numbers. 
One of them is to use fixed-point notation, which 
involves using integer arithmetic and simply 
imagining the binary point somewhere other than to 
the right of the least significant digit. 

• Adding two numbers in this form can be done with an 
integer adder, while multiplication requires some 
additional shifts.



• Furthermore, there is only one non-integer 
representation that is widely used:                            
the floating-point representation.

• In this system, a machine word is divided into two 
parts: an exponent and a mantissa. 

• In order to perform arithmetic operations 
correctly on numbers represented by floating-
point, it is necessary to normalize them
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• Fixed Point
• The representation of the decimal point that separates 

the integer part from the fractional part in a fractional 
(real) number poses a problem at the machine level. 
The first solution adopted was not to physically 
represent the decimal point and to treat the number as 
if it were an integer. We will say that the decimal
point is fictitious (or virtual); it is managed by the 
programmer, who defines its position as calculations 
progress, which is not straightforward, hence its 
drawback.
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• Example: Let's consider a real number represented in 
6 bits (in signed binary representation: sign + 
absolute value), as follows:

• 1 bit for the sign (0 for positive, 1 for negative) 

• 3 bits for the integer part 

• 2 bits for the fractional part
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Bit of sign Integer Part fractional Part



• The largest representable fractional number on these 
6 bits is:

• The largest absolute value of the integer part to be 
represented is equal to . 

• The largest absolute value of the fractional part to be 
represented is equal to . 

• Thus, the largest representable number is equal to 
+7.75.
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• The smallest representable fractional number on these 
6 bits is:

• The largest absolute value of the integer part to be 
represented is equal to . 

• The largest absolute value of the fractional part to be 
represented is equal to . 

• Thus, the smallest representable number is equal to:   
-7.75.
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• The table below 

provides the 

representation 

of some fractional 

numbers in signed

magnitude 

notation on 6 bits:
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• Floating-point

• In the real world, we often deal (problem) with 
numbers that belong to a very large range. 

• The numbers we commonly use are in exponential 
notation: For example, to represent the number 
1278450000000, one can use one of the following 
representations:
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• We can see that exponential representations help 
avoid carrying many often insignificant digits. This 
new representation is based on the precision of a 
mantissa and an exponent: 

• where 'm' is the mantissa and 'e' is the exponent. In 
the binary system, the exponential notion is called 
floating-point notation. 

• It is represented as follows: where 'm' is the mantissa
and 'e' is the exponent.
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• 1- Shift:

• To avoid having negative exponents, a shifted
exponent is used as a substitute of the simple
exponent. 

• The value of this Shifted Exponent (SE) is equal 
to: the value of the Real Exponent (RE), added to 
the shift value. 

• The shift value must be large enough to shift all 
exponents with negative values.
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• Example: 

• Let's assume a shift of 16; in this way, the value 16 is 
added to the Real Exponent value:
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• Normalization

A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple
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Representation of a Floating-Point Number with Base 2

• Exponentiation 

Before the 1980s, various representations of floating-
point real numbers were used. After 1985, a standard 
was adopted by the majority of computer 
manufacturers, which is the IEEE 754 standard. For this 
reason, we will only present this representation. In 
general, a floating-point number is represented in 
computers as a sequence of bits divided into                     
three zones:
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In general, a floating-point number is represented in 
computers as a sequence of bits divided into three zones: 

 Sign bit 

 Exponent 

 Mantissa 

In the following examples, we will adopt the following 
format for the representation of floating-point numbers:
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• The IEEE 754 Representation 

• This representation of real numbers is, in fact, an 
international standard that is widely recognized and 
used by the majority of computer manufacturers 
today. This standard defines three formats for 
floating-point numbers: 

• Single precision on 32 bits 

• Double precision on 64 bits 

• Extended precision on 80 bits
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• The IEEE 754 representation 

• Single precision on 32 bits
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• Whether in one representation or the other, a number of 
conventions have been adopted:

A/- The representation order is as follows: first (1) the sign, 
then (2) the exponent, and finally (3) the mantissa.

B/- Exponents are balance by a shift value to avoid using 
two's complement representation for negative exponents.

C/- Normalization of numbers in IEEE 754 ensures that the 
mantissa starts with: a single digit 1 before the decimal 
point. This digit is implicit (does not appear in the 
representation).
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• First question: 

• why choose the order sign + exponent followed by 
mantissa? 

• Answer: 

• In fact, this was adopted to facilitate the comparison
between real numbers. Since mantissas are 
normalized (always start with an implied bit of 1), 
comparing two numbers directly comes down to 
comparing the exponents.
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• Second question: 
Why apply a shift to the exponents? 
• Answer: 
In fact, this answer follows the previous one, that is, 
when comparing two numbers by comparing the 
exponents, and if we use the two's complement 
representation, numbers with negative exponents will 
appear larger than numbers with positive exponents 
(unless additional complementation operations are 
performed, etc.).
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• Third question: 

Why insist that numbers always have a 1 as the only 
implied digit before the decimal point? 

• Answer: 

In fact, this is to save one bit in the representation. For 
example, in the IEEE 754 single-precision standard, 
there are 23 bits for the mantissa, whereas in reality, 
there are 24 (including the implied bit).
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• Fourth question: 
Given that we insist on the only digit before the decimal 
point being 1, does this mean we cannot represent the null 
value 0? 
• Answer:
Indeed, this is a concern, but the designers of the IEEE 754 
standard addressed it by setting the exponent to zero 
whenever the value of the number is zero. It is worth noting 
that the exponent is shifted, meaning that 0 is the smallest 
value of the exponent (since we should not have a negative 
shifted exponent).
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• The IEEE 754 standard also addresses exceptional cases 
that may arise from calculations. Indeed, during 
computations, situations such as division by zero or 
encountering numbers approaching + or - can occur. 
For instance, in the IEEE 754 single-precision standard, a 
value with a mantissa=0 and an exponent=255 indicates 
that the number is infinite. Additionally, the value 0 is 
represented by a mantissa of 0 and an exponent of 0. 
Lastly, when the exponent is zero and the mantissa is non-
zero, it indicates that the represented value is not a 
number.
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• Single-precision number format:
 1 bit for the sign 
 8 bits for the exponent (the largest value is 127, the 

smallest is -126, with an offset of 127) 
 23 bits for the mantissa

• Double-precision number format:
 1 bit for the sign 
 11 bits for the exponent (the largest value is 1023, 

the smallest is -1022, with an offset of 1023) 
 52 bits for the mantissa



Representation in IEEE 754 single-precision

1. Convert the number to binary
2. Write the number as:  N= (+/- )(1,m)2*2ER

3. Calculate the shifted exponent SE = ER + 127,
where the exponent is shifted by 28-1 -1=127;
(RE: Real Exponent)

Example: Represent the number N= (-3.625)10

in IEEE754 single-precision format 
Note: The 1 preceding the decimal point is not encoded 
in the machine (referred to as the hidden bit).



Representation in IEEE 754 single-precision

• To convert a number written in IEEE 754 format:

1. Calculate the Real Exponent RE = SE – 127

2. Calculate the value = sign (1, mantissa )2 *2RE

with sign= ±1

• Example: What is the decimal value of the following 
number represented in IEEE 754?



• We can find the expression formula for real numbers 
as follows:

• Note :

• If the number is positive, then: 

• If the number is negative, then:

Representation in IEEE 754 single-precision



• Special Values
Values  where all the exponent digits are either 0 or 1 
are used to represent particular numbers:
• Exponent = 0 et mantissa = 0  nomber = 0
• Exponent = 11111111 and mantissa = 0  nomber 
• Exponent = 11111111 and mantissa  0  Not a Number

(NaN)
• Exponent = 0 et mantissa  0  denormalized number
(very small absolute value – we abandon scientific 

notation here: value = sign × mantissa × 2-shift+1

= sign × mantissa × 2-126 )

Representation in IEEE 754 single-precision



• Exemple 1: 

The representation of the real number (-42.375)10 
according to the IEEE 754 standard in single precision 
will be calculated as follows:

Representation in IEEE 754 single-precision
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Example 2: The decimal value represented in floating-point by 
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1 
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision
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However, certain conditions must be respected for the 
exponents: 

• The exponent 00000000 is not allowed. 
• The exponent 11111111 is not allowed. 
However, it is used to signal errors; this configuration is 

then called NaN (Not a Number). 
It is necessary to add 127 to the exponent (in the case of 

single precision) for a conversion from decimal to a 
real binary number. Thus, the exponents can range 
from -126 to 127.

Representation in IEEE 754 single-precision



• Exemple 3 : Find the IEEE 754 single-precision 
representation of the number (35.5)10

• The nomber is positive, so : S=0 

• (35.5)10 = ( 100011.1)2 ……. Fixed point

• = 1.000111 * 25.......... Floating point ( M= 000111) 

• Exponent : E-127 = 5 - E= 132 = ( 10000100)2 

Representation in IEEE 754 single-precision



• Exemple 3 : Find the IEEE 754 single-precision 
representation of the number (35.5)10

• The nomber is positive, so : S=0 

• (35.5)10 = ( 100011.1)2 ……. Fixed point

• = 1.000111 * 25.......... Floating point ( M= 000111) 

• Exponent : E-127 = 5 - E= 132 = ( 10000100)2 

Representation in IEEE 754 single-precision



• Exemple 4:

Find the IEEE 754 single-precision representation 

of the number (- 525.5)10

The nomber is negative, so : S=1 

• (525.5)10 = (1000001101.1)2 ................... Fixed point 

• = 1.0000011011* 29 ......... Floating point                                
( M= 0000011011) 

• Exponent : E-127 = 9 - E= 136 = (10001000)2  , donc:

Representation in IEEE 754 single-precision
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• Exemple 5 : Find the IEEE 754 single-precision 
representation of the number (-0.625)10. 

• The nomber is negative, so :  S=1 

• (0.625)10 = (0.101)2 ……. Fixed point 

• = 1.01* 2-1 -1 .......... Floating point ( M= 01) 

• Exponent : E-127 = -1 then  E= 126 = (1111110)2
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• Exemple 6 : Find the floating-point number with the 
following IEEE 754 representation:

• S =0 alors  so the number is positive
• E = ( 10000001)2 = 129 then E-127 = 129 -127 =2 
• 1.M = 1.111 
• so 1.111 * 22 = (111,1)2 = (7.5)10

Representation in IEEE 754 single-precision
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