
Chapter 03 Part 02

Real Number Encodin

Real Number Encodin

• Many applications require non-integer numbers.

• There are several ways to represent these numbers.
One of them is to use fixed-point notation, which
involves using integer arithmetic and simply
imagining the binary point somewhere other than to
the right of the least significant digit.

• Adding two numbers in this form can be done with an
integer adder, while multiplication requires some
additional shifts.

• Furthermore, there is only one non-integer
representation that is widely used:
the floating-point representation.

• In this system, a machine word is divided into two
parts: an exponent and a mantissa.

• In order to perform arithmetic operations
correctly on numbers represented by floating-
point, it is necessary to normalize them

Real Number Encodin

• Fixed Point
• The representation of the decimal point that separates

the integer part from the fractional part in a fractional
(real) number poses a problem at the machine level.
The first solution adopted was not to physically
represent the decimal point and to treat the number as
if it were an integer. We will say that the decimal
point is fictitious (or virtual); it is managed by the
programmer, who defines its position as calculations
progress, which is not straightforward, hence its
drawback.

Real Number Encodin

• Example: Let's consider a real number represented in
6 bits (in signed binary representation: sign +
absolute value), as follows:

• 1 bit for the sign (0 for positive, 1 for negative)

• 3 bits for the integer part

• 2 bits for the fractional part

Real Number Encodin

Bit of sign Integer Part fractional Part

• The largest representable fractional number on these
6 bits is:

• The largest absolute value of the integer part to be
represented is equal to .

• The largest absolute value of the fractional part to be
represented is equal to .

• Thus, the largest representable number is equal to
+7.75.

Real Number Encodin

• The smallest representable fractional number on these
6 bits is:

• The largest absolute value of the integer part to be
represented is equal to .

• The largest absolute value of the fractional part to be
represented is equal to .

• Thus, the smallest representable number is equal to:
-7.75.

Real Number Encodin

• The table below

provides the

representation

of some fractional

numbers in signed

magnitude

notation on 6 bits:

Real Number Encodin

• Floating-point

• In the real world, we often deal (problem) with
numbers that belong to a very large range.

• The numbers we commonly use are in exponential
notation: For example, to represent the number
1278450000000, one can use one of the following
representations:

Real Number Encodin

• We can see that exponential representations help
avoid carrying many often insignificant digits. This
new representation is based on the precision of a
mantissa and an exponent:

• where 'm' is the mantissa and 'e' is the exponent. In
the binary system, the exponential notion is called
floating-point notation.

• It is represented as follows: where 'm' is the mantissa
and 'e' is the exponent.

Real Number Encodin

• 1- Shift:

• To avoid having negative exponents, a shifted
exponent is used as a substitute of the simple
exponent.

• The value of this Shifted Exponent (SE) is equal
to: the value of the Real Exponent (RE), added to
the shift value.

• The shift value must be large enough to shift all
exponents with negative values.

Real Number Encodin

• Example:

• Let's assume a shift of 16; in this way, the value 16 is
added to the Real Exponent value:

Real Number Encodin

• Example:

• Let's assume a shift of 16; in this way, the value 16 is
added to the Real Exponent value:

Real Number Encodin

• Example:

• Let's assume a shift of 16; in this way, the value 16 is
added to the Real Exponent value:

Real Number Encodin

Real Number Encodin

• Normalization

A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple

Real Number Encodin

2- Normalization
A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple

Real Number Encodin

2- Normalization
A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple

Real Number Encodin

2- Normalization
A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple

Real Number Encodin

2- Normalization
A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple

Real Number Encodin

2- Normalization
A number in scientific notation is said to be normalized
if its integer part consists of only one digit.
• Exemple

Real Number Encodin

Representation of a Floating-Point Number with Base 2

• Exponentiation

Before the 1980s, various representations of floating-
point real numbers were used. After 1985, a standard
was adopted by the majority of computer
manufacturers, which is the IEEE 754 standard. For this
reason, we will only present this representation. In
general, a floating-point number is represented in
computers as a sequence of bits divided into
three zones:

Real Number Encodin

In general, a floating-point number is represented in
computers as a sequence of bits divided into three zones:

 Sign bit

 Exponent

 Mantissa

In the following examples, we will adopt the following
format for the representation of floating-point numbers:

Real Number Encodin

In general, a floating-point number is represented in
computers as a sequence of bits divided into three zones:

 Sign bit

 Exponent

 Mantissa

In the following examples, we will adopt the following
format for the representation of floating-point numbers:

Real Number Encodin

In general, a floating-point number is represented in
computers as a sequence of bits divided into three zones:

 Sign bit

 Exponent

 Mantissa

In the following examples, we will adopt the following
format for the representation of floating-point numbers:

Real Number Encodin

In general, a floating-point number is represented in
computers as a sequence of bits divided into three zones:

 Sign bit

 Exponent

 Mantissa

In the following examples, we will adopt the following
format for the representation of floating-point numbers:

Real Number Encodin

• The IEEE 754 Representation

• This representation of real numbers is, in fact, an
international standard that is widely recognized and
used by the majority of computer manufacturers
today. This standard defines three formats for
floating-point numbers:

• Single precision on 32 bits

• Double precision on 64 bits

• Extended precision on 80 bits

Real Number Encodin

• The IEEE 754 representation

• Single precision on 32 bits

Real Number Encodin

• The IEEE 754 representation

• Single precision on 32 bits

• Double precision on 64 bits

Real Number Encodin

• The IEEE 754 representation

• Single precision on 32 bits

• Double precision on 64 bits

• Extended precision on 80 bits

Real Number Encodin

• Whether in one representation or the other, a number of
conventions have been adopted:

A/- The representation order is as follows: first (1) the sign,
then (2) the exponent, and finally (3) the mantissa.

B/- Exponents are balance by a shift value to avoid using
two's complement representation for negative exponents.

C/- Normalization of numbers in IEEE 754 ensures that the
mantissa starts with: a single digit 1 before the decimal
point. This digit is implicit (does not appear in the
representation).

Real Number Encodin

• First question:

• why choose the order sign + exponent followed by
mantissa?

• Answer:

• In fact, this was adopted to facilitate the comparison
between real numbers. Since mantissas are
normalized (always start with an implied bit of 1),
comparing two numbers directly comes down to
comparing the exponents.

Real Number Encodin

• Second question:
Why apply a shift to the exponents?
• Answer:
In fact, this answer follows the previous one, that is,
when comparing two numbers by comparing the
exponents, and if we use the two's complement
representation, numbers with negative exponents will
appear larger than numbers with positive exponents
(unless additional complementation operations are
performed, etc.).

Real Number Encodin

• Third question:

Why insist that numbers always have a 1 as the only
implied digit before the decimal point?

• Answer:

In fact, this is to save one bit in the representation. For
example, in the IEEE 754 single-precision standard,
there are 23 bits for the mantissa, whereas in reality,
there are 24 (including the implied bit).

Real Number Encodin

• Fourth question:
Given that we insist on the only digit before the decimal
point being 1, does this mean we cannot represent the null
value 0?
• Answer:
Indeed, this is a concern, but the designers of the IEEE 754
standard addressed it by setting the exponent to zero
whenever the value of the number is zero. It is worth noting
that the exponent is shifted, meaning that 0 is the smallest
value of the exponent (since we should not have a negative
shifted exponent).

Real Number Encodin

• The IEEE 754 standard also addresses exceptional cases
that may arise from calculations. Indeed, during
computations, situations such as division by zero or
encountering numbers approaching + or - can occur.
For instance, in the IEEE 754 single-precision standard, a
value with a mantissa=0 and an exponent=255 indicates
that the number is infinite. Additionally, the value 0 is
represented by a mantissa of 0 and an exponent of 0.
Lastly, when the exponent is zero and the mantissa is non-
zero, it indicates that the represented value is not a
number.

Real Number Encodin

• Single-precision number format:
 1 bit for the sign
 8 bits for the exponent (the largest value is 127, the

smallest is -126, with an offset of 127)
 23 bits for the mantissa

• Double-precision number format:
 1 bit for the sign
 11 bits for the exponent (the largest value is 1023,

the smallest is -1022, with an offset of 1023)
 52 bits for the mantissa

Representation in IEEE 754 single-precision

1. Convert the number to binary
2. Write the number as: N= (+/-)(1,m)2*2ER

3. Calculate the shifted exponent SE = ER + 127,
where the exponent is shifted by 28-1 -1=127;
(RE: Real Exponent)

Example: Represent the number N= (-3.625)10

in IEEE754 single-precision format
Note: The 1 preceding the decimal point is not encoded
in the machine (referred to as the hidden bit).

Representation in IEEE 754 single-precision

• To convert a number written in IEEE 754 format:

1. Calculate the Real Exponent RE = SE – 127

2. Calculate the value = sign (1, mantissa)2 *2RE

with sign= ±1

• Example: What is the decimal value of the following
number represented in IEEE 754?

• We can find the expression formula for real numbers
as follows:

• Note :

• If the number is positive, then:

• If the number is negative, then:

Representation in IEEE 754 single-precision

• Special Values
Values where all the exponent digits are either 0 or 1
are used to represent particular numbers:
• Exponent = 0 et mantissa = 0 nomber = 0
• Exponent = 11111111 and mantissa = 0 nomber
• Exponent = 11111111 and mantissa 0 Not a Number

(NaN)
• Exponent = 0 et mantissa 0 denormalized number
(very small absolute value – we abandon scientific

notation here: value = sign × mantissa × 2-shift+1

= sign × mantissa × 2-126)

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

• Exemple 1:

The representation of the real number (-42.375)10
according to the IEEE 754 standard in single precision
will be calculated as follows:

Representation in IEEE 754 single-precision

Example 2: The decimal value represented in floating-point by
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision

Example 2: The decimal value represented in floating-point by
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision

Example 2: The decimal value represented in floating-point by
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision

Example 2: The decimal value represented in floating-point by
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision

Example 2: The decimal value represented in floating-point by
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision

Example 2: The decimal value represented in floating-point by
the code:

(C26D0000)IEEE754 will be calculated as follows:

• If the number is negative, then: S=1
• If the number is positive, then: S=0

Representation in IEEE 754 single-precision

However, certain conditions must be respected for the
exponents:

• The exponent 00000000 is not allowed.
• The exponent 11111111 is not allowed.
However, it is used to signal errors; this configuration is

then called NaN (Not a Number).
It is necessary to add 127 to the exponent (in the case of

single precision) for a conversion from decimal to a
real binary number. Thus, the exponents can range
from -126 to 127.

Representation in IEEE 754 single-precision

• Exemple 3 : Find the IEEE 754 single-precision
representation of the number (35.5)10

• The nomber is positive, so : S=0

• (35.5)10 = (100011.1)2 ……. Fixed point

• = 1.000111 * 25.......... Floating point (M= 000111)

• Exponent : E-127 = 5 - E= 132 = (10000100)2

Representation in IEEE 754 single-precision

• Exemple 3 : Find the IEEE 754 single-precision
representation of the number (35.5)10

• The nomber is positive, so : S=0

• (35.5)10 = (100011.1)2 ……. Fixed point

• = 1.000111 * 25.......... Floating point (M= 000111)

• Exponent : E-127 = 5 - E= 132 = (10000100)2

Representation in IEEE 754 single-precision

• Exemple 4:

Find the IEEE 754 single-precision representation

of the number (- 525.5)10

The nomber is negative, so : S=1

• (525.5)10 = (1000001101.1)2 Fixed point

• = 1.0000011011* 29 Floating point
(M= 0000011011)

• Exponent : E-127 = 9 - E= 136 = (10001000)2 , donc:

Representation in IEEE 754 single-precision

• Exemple 4:

Find the IEEE 754 single-precision representation

of the number (- 525.5)10

The nomber is negative, so : S=1

• (525.5)10 = (1000001101.1)2 Fixed point

• = 1.0000011011* 29 Floating point
(M= 0000011011)

• Exponent : E-127 = 9 - E= 136 = (10001000)2 , donc:

Representation in IEEE 754 single-precision

• Exemple 5 : Find the IEEE 754 single-precision
representation of the number (-0.625)10.

• The nomber is negative, so : S=1

• (0.625)10 = (0.101)2 ……. Fixed point

• = 1.01* 2-1 -1 Floating point (M= 01)

• Exponent : E-127 = -1 then E= 126 = (1111110)2

Representation in IEEE 754 single-precision

• Exemple 5 : Find the IEEE 754 single-precision
representation of the number (-0.625)10.

• The nomber is negative, so : S=1

• (0.625)10 = (0.101)2 ……. Fixed point

• = 1.01* 2-1 -1 Floating point (M= 01)

• Exponent : E-127 = -1 then E= 126 = (1111110)2

Representation in IEEE 754 single-precision

• Exemple 6 : Find the floating-point number with the
following IEEE 754 representation:

• S =0 alors so the number is positive
• E = (10000001)2 = 129 then E-127 = 129 -127 =2
• 1.M = 1.111
• so 1.111 * 22 = (111,1)2 = (7.5)10

Representation in IEEE 754 single-precision

• Exemple 6 : Find the floating-point number with the
following IEEE 754 representation:

• S =0 alors so the number is positive
• E = (10000001)2 = 129 then E-127 = 129 -127 =2
• 1.M = 1.111
• so 1.111 * 22 = (111,1)2 = (7.5)10

Representation in IEEE 754 single-precision

