Abdelhafid Boussouf University Centre of Mila,

Institute of Sciences and Technology

Department of Technical sciences

Series N°1: Mathematical review

Exercice 1

- 1. Using the dimensional analysis, give the dimension and the unity of speed (V), acceleration (γ) , force (f), and work (W).
- 2. In the first assumption, we consider the period of a pendulum is proportional to its mass (to the power of α) and to its length (to the power of β), and to gravitational constant g. Find α and β discuss the result.
- 3. Suppose that the acceleration γ of a particle moving with uniform speed v in a circle of radius r is proportional to some power of r (r^{α}) and some power of v (v^{α}) . Determine the values of α and β and write the simplest form of an equation for the acceleration.
- 4. Newton's law of universal gravitation is given by the relation $f = G \frac{m_1 \times m_2}{r^2}$, (G is the constant of gravity, m_1 and m_2 are the masses of the bodies, and r is the distance between them). Based on the results above (the unit of force), give the Si unit to G.

Exercise 2

- In the Cartesian system, represent the vectors $\vec{V}_1 = -3\vec{\imath} 4\vec{\jmath} + 4\vec{k}$, $\vec{V}_2 = 2\vec{\imath} + 3\vec{\jmath} 4\vec{k}$, $\vec{V}_3 = 3\vec{\imath} 2\vec{\jmath} + 3\vec{k}$, $\vec{V}_2 \vec{V}_1$.
 - The magnitude of $\vec{V} = 2\vec{V}_1 + \vec{V}_2 \vec{V}_1$.
 - Determine the vector unity of $\vec{A} = \vec{V}_1 + \vec{V}_2$.
 - Calculate the scalar product of $\overrightarrow{V_1} \cdot \overrightarrow{V}_2$, and $\overrightarrow{V_1} \cdot \overrightarrow{V}_1$.

Exercise 3

Calculate the area of the parallelogram constructed by

$$\vec{V}_1 = 3\vec{\imath} - 4\vec{\jmath} + 4\vec{k}$$
 and $\vec{V}_1 = -3\vec{\imath} + 2\vec{\jmath} + 3\vec{k}$.

Exercise 4

- Represent the triangle constructed by the points $M_1(4, 2, -1)$, $M_2(2, 3, 5)$ and $M_3(2, 2, 2)$ in the Cartesian system and calculate its area.

Exercise 5

• Calculate the volume of the parallelepiped constructed by $\vec{V}_1 = -3\vec{\imath} - 4\vec{\jmath} + 4\vec{k}$, $\vec{V}_2 = 2\vec{\imath} + 3\vec{\jmath} - 4\vec{k}$, and $\vec{V}_3 = 3\vec{\imath} - 2\vec{\jmath} + 3\vec{k}$.

Exercise 6

For
$$\vec{V} = (t^2 + 2t)\vec{i} - 4\sin(2t)\vec{j} + 4e^t\vec{k}$$
, calculate $\frac{d\vec{v}}{dt}$ and $\int_0^1 \vec{V} dt$, and $\frac{d(\vec{V}(t_2) - d\vec{v}(t_1))}{dt}$