CHAPTER 4

Differentiable Functions

Dr. Chellouf yassamine Email: y.chellouf@centre-univ-mila.dz

Contents

Contents						
1	Diff	erentiab	ole Functions	1		
	1.1	The D	erivative	1		
		1.1.1	Definition and basic properties	1		
		1.1.2	Chain rule	4		
		1.1.3	Inverse function	4		
	1.2	Left ar	nd Right Derivatives	4		
	1.3	Succes	ssive Derivatives and Leibnitz's Rule	5		
		1.3.1	Successive derivatives	5		
		1.3.2	Leibnitz formula	6		
	1.4	The M	ean Value Theorem	7		
		1.4.1	Extreme values	7		
		1.4.2	Local extremum theorem	8		
		1.4.3	Rolle's theorem	8		
		1.4.4	Mean value theorem	8		

	1.4.5 Mean value inequality	9
1.5	Increasing and Derivative Functions	9
1.6	L'Hôpital's Rule	9

ii

Differentiable Functions

1.1 The Derivative

1.1.1 Definition and basic properties

Definition 1.1.1. Let I be an interval, let $f : I \longrightarrow \mathbb{R}$ be a function, and let $c \in I$. If the limit

$$l = \lim_{x \to c} \frac{f(x) - f(c)}{x - c},$$

exists, then we say f is differentiable at c, we call "l" the derivative of f at c, and we write f'(c) = l.

If f is differentiable at all $c \in I$, then we simply say that f is differentiable, and then we obtain a function $f' : I \longrightarrow \mathbb{R}$. The derivative is sometimes written as $\frac{df}{dx}$ or $\frac{d}{dx}(f(x))$. The expression $\frac{f(x) - f(c)}{x - c}$ is called the difference quotient.

The graphical interpretation of the derivative is depicted in Figure 1.2. The left-hand plot gives the line through (c, f(c)) and (x, f(x)) with slope $\frac{f(x) - f(c)}{x - c}$, that is, the so-called secant line. When we take the limit as x goes to c, we get the right-hand plot, where we see that the derivative of the function at the point c is the slope of the line tangent to the graph of f at the point (c, f(c)).

Figure 1.1: Graphical interpretation of the derivative

Example 1.1.1. Let $f(x) = x^2$ defined on the whole real line, and let $c \in \mathbb{R}$ be arbitrary. We find that if $x \neq c$,

$$\frac{x^2 - c^2}{x - c} = \frac{(x + c)(x - c)}{x - c} = x + c.$$

Therefore,

$$f'(c) = \lim_{x \to c} \frac{x^2 - c^2}{x - c} = \lim_{x \to c} (x + c) = 2c.$$

Example 1.1.2. The function $f(x) = \sqrt{x}$ is differentiable for x > 0. To see this fact, fix c > 0, and suppose $x \neq c$ and x > 0. Compute

$$\frac{\sqrt{x} - \sqrt{c}}{x - c} = \frac{\sqrt{x} - \sqrt{c}}{(\sqrt{x} - \sqrt{c})(\sqrt{x} + \sqrt{c})} = \frac{1}{\sqrt{x} + \sqrt{c}}$$

Therefore,

$$f'(c) = \lim_{x \to c} \frac{\sqrt{x} - \sqrt{c}}{x - c} = \lim_{x \to c} \frac{1}{\sqrt{x} + \sqrt{c}} = \frac{1}{2\sqrt{c}}$$

Remark 1.1.1. By setting x - c = h, the previous limit can be written in the form

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

Proposition 1.1.1. Let $f : I \longrightarrow \mathbb{R}$ be differentiable at $c \in I$, then it is continuous at c.

Proof 1. We know the limits

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c), \quad and \quad \lim_{x \to c} (x - c) = 0.$$

exist. Furthermore,

$$f(x) - f(c) = \left(\frac{f(x) - f(c)}{x - c}\right)(x - c),$$

Therefore, the limit of f(x) - f(c) *exists and*

$$\lim_{x \to c} (f(x) - f(c)) = \left(\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\right) \left(\lim_{x \to c} (x - c)\right) = f'(c).0 = 0.$$

Hence $\lim_{x \to c} f(x) = f(c)$, and f is continuous at c.

Proposition 1.1.2. If f is differentiable over I, then f is continuous over I.

Proposition 1.1.3. *Let I be an interval, let* $f : I \longrightarrow \mathbb{R}$ *and* $g : I \longrightarrow \mathbb{R}$ *be differentiable at* $c \in I$ *, and let* $\alpha \in \mathbb{R}$ *, then:*

1. The linearity:

- Define $h: I \longrightarrow \mathbb{R}$ by $h(x) = \alpha f(x)$. Then h is differentiable at c and $h'(c) = \alpha f'(c)$.
- Define $h : I \longrightarrow \mathbb{R}$ by h(x) = f(x) + g(x). Then h is differentiable at c and h'(c) = f'(c) + g'(c).

2. Product rule:

If $h: I \longrightarrow \mathbb{R}$ is defined by h(x) = g(x)f(x), then h is differentiable at c and

$$h'(c) = f(c)g'(c) + f'(c)g(c).$$

3. Quotient rule:

If $g(x) \neq 0$ for all $x \in I$, and if $h: I \longrightarrow \mathbb{R}$ is defined by $h(x) = \frac{f(x)}{g(x)}$, then h is differentiable at c and

$$h'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$$

(3)

1.1.2 Chain rule

Proposition 1.1.4. *Let I*, *J be intervals, let* $g : I \longrightarrow J$ *be differentiable at* $c \in I$, *and* $f : J \longrightarrow \mathbb{R}$ *be differentiable at* g(c)*. If* $h : I \longrightarrow \mathbb{R}$ *is defined by*

$$h(x) = (f \circ g)(x) = f(g(x)),$$

then h is differentiable at c and

$$h'(c) = f'(g(c))g'(c).$$

1.1.3 Inverse function

Proposition 1.1.5. Let $I \subset \mathbb{R}$ be an interval, and let f be an injective and continuous function on I. If f is differentiable at point c with $f'(c) \neq 0$, then the inverse function: $f^{-1} : f(I) \longrightarrow \mathbb{R}$ is differentiable at f(c) and

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)}.$$

1.2 Left and Right Derivatives

Definition 1.2.1. Suppose $f : [a, b] \longrightarrow \mathbb{R}$. Then f is right-differentiable at $a \le c < b$ with right derivative $f'(c^+)$ if

$$\lim_{\substack{x \to c \\ x \to c}} \frac{f(x) - f(c)}{x - c} = f'(c^+),$$

exists, and f is left-differentiable at $a < c \le b$ with left derivative $f'(c^{-})$ if

$$\lim_{\substack{x \to c \\ x \to c}} \frac{f(x) - f(c)}{x - c} = f'(c^{-}) \text{ exists.}$$

A function is differentiable at a < c < b if and only if the left and right derivatives exist at c and are equal.

€4)

Example 1.2.1. The absolute value function f(x) = |x| is left and right differentiable at 0 with left and right derivatives

 $f'(0^+) = 1$ and $f'(0^-) = -1$.

These are not equal, and f is not differentiable at 0.

1.3 Successive Derivatives and Leibnitz's Rule

1.3.1 Successive derivatives

Let f(x) be a differentiable function on an interval *I*. Then the derivative f'(x) is a function of *x* and if f'(x) is differentiable at *x*, then the derivative of f'(x) at *x* is called second derivative of f(x) at *x* and it is denoted by f''(x) or $f^{(2)}(x)$. Proceeding in this way the n - th order derivative of f(x) is the derivative of the function $f^{(n-1)}(x)$ and it the denoted by $f^{(n)}(x)$.

Example 1.3.1. *1*). Let $f(x) = \sin(x)$. Calculate $f^{(n)}(x)$. We have:

$$f^{(0)}(x) = \sin(x),$$

$$f'(x) = f^{(1)}(x) = \cos(x) = \sin(x + \frac{\pi}{2}),$$

$$f^{(2)}(x) = -\sin(x) = \sin(x + \pi),$$

$$f^{(3)}(x) = -\cos(x) = \sin(x + \frac{3\pi}{2}),$$

$$f^{(4)}(x) = \sin(x) = \sin(x + 2\pi),$$

$$\vdots$$

$$f^{(n)}(x) = \sin(x + \frac{n\pi}{2}).$$

2). $f(x) = \ln x$. Calculate $f^{(n)}(x)$. We have:

$f^{(0)}(x) = \ln x,$	$f'(x) = \frac{1}{x},$
$f^{(2)}(x) = \frac{-1}{x^2},$	$f^{(3)}(x) = \frac{2}{x^3},$
$f^{(4)}(x) = \frac{-2 \times 3}{x^4},$	$f^{(5)}(x) = \frac{2 \times 3 \times 4}{x^5} = \frac{4!}{x^5},$
$f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{x^n}, \ n \in \mathbb{N}^*.$	

Definition 1.3.1. Let I be an interval of \mathbb{R} and f be a function defined on I. It is said that f is of class C^1 on I if f is differentiable on I and f' continues on I. We say that f is of class $C^n(I)$ if f is n-times differentiable on I and if $f^{(n)}$ continues on I.

1.3.2 Leibnitz formula

Theorem 1.3.1. If f and g be two functions each differentiable n times on I, then $f \times g$ is n-times differentiable on I, and:

$$(f \times g)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)}, \ C_n^k = \frac{n!}{k!(n-k)!}.$$

Example 1.3.2. *For n* = 2*, we have:*

$$(f \times g)^{(2)} = C_2^0 f''g + C_2^1 f'g' + C_2^2 fg''$$
$$= f''g + 2f'g' + fg''.$$

For n = 6, we have:

$$\begin{split} (f\times g)^{(6)} &= C_6^0 f^{(6)}g + C_6^1 f^{(5)}g' + C_6^2 f^{(4)}g'' + C_6^3 f^{(3)}g^{(3)} + C_6^4 f''g^{(4)} + C_6^5 f'g^{(5)} + C_6^6 fg^{(6)} \\ &= f^{(6)}g + 6f^{(5)}g' + 15f^{(4)}g'' + 20f^{(3)}g^{(3)} + 15f''g^{(4)} + 6f'g^{(5)} + fg^{(6)}. \end{split}$$

If $h(x) = (x^3 + 5x + 1)e^x = f(x)g(x)$, then:

$f'(x) = 3x^2 + 5,$	$g'(x)=e^x,$
$f^{\prime\prime}(x)=6x,$	$g^{\prime\prime}(x)=e^x,$
$f^{(3)}(x) = 6,$	$g^{(3)}(x)=e^x,$
$f^{(4)}(x) = 0,$	$g^{(4)}(x)=e^x,$
$f^{(n)}(x) = 0, \ \forall n \ge 4,$	$g^{(n)}(x)=e^x.$

So:

$$h^{(n)}(x) = C_n^0 f g^{(n)} + C_n^1 f' g^{(n-1)} + C_n^2 f'' g^{(n-2)} + C_n^3 f^{(3)} g^{(n-3)} + C_n^4 f^{(4)} g^{(n-4)} + \cdots$$

= $(x^3 + 5x + 1)e^x + n(3x^2 + 5)e^x + \frac{n(n-1)}{2}(6x)e^x + \frac{n(n-1)(n-2)}{6}6e^x.$

1.4 The Mean Value Theorem

1.4.1 Extreme values

Definition 1.4.1. A critical point of a function f(x), is a value c in the domain of f where f is not differentiable or its derivative is 0 (i.e. f'(c) = 0).

Definition 1.4.2. A function f is said to have a local maximum (local minimum) at c if f is defined on an open interval I containing c and $f(x) \le f(c)$ ($f(x) \ge f(c)$) for all $x \in I$. In either case, f is said to have a local extremum at c.

Figure 1.2: Local extrema of f

(7**)**

1.4.2 Local extremum theorem

Theorem 1.4.1. If f has a local extremum at c and if f is differentiable at c, then f'(c) = 0.

Proof. Suppose that *f* has a local maximum at *c*. Let *I* be an open interval containing *c* such that $f(x) \le f(c)$ for all $x \in I$. Then:

$$\frac{f(c) - f(c)}{x - c} = \begin{cases} \ge 0, \ if \ x \in I \ and \ x < c, \\ \le 0, \ if \ x \in I \ and \ x > c. \end{cases}$$

It follows that the left-hand derivative of f at c is ≥ 0 and the right-hand derivative is ≤ 0 , hence f'(c) = 0. The proof for the local minimum case is similar.

1.4.3 Rolle's theorem

Theorem 1.4.2. Let f be continuous on [a, b] and differentiable on]a, b[. If f(a) = f(b), then there exists a point $c \in]a, b[$ such that f'(c) = 0.

Proof. By the extreme value theorem there exist $x_m, x_M \in [a, b]$ such that $f(x_m) \leq f(x) \leq f(x_M)$ for all $x \in [a, b]$. If $f(x_m) = f(x_M)$, then f is a constant function and the assertion of the theorem holds trivially. If $f(x_m) \neq f(x_M)$, then either $x_m \in [a, b]$ or $x_M \in [a, b]$, and the conclusion follows from the local extremum theorem.

1.4.4 Mean value theorem

Theorem 1.4.3. If f is continuous on [a, b] and differentiable on]a, b[, then there exists $c \in]a, b[$ such that:

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Proof. The function $g : [a, b] \longrightarrow \mathbb{R}$ defined by:

$$g(x) = f(x) - f(a) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a),$$

is continuous on [a, b] and differentiable on]a, b[with

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Moreover, g(a) = g(b) = 0. Rolle's theorem implies that there exists a < c < b such that g'(c) = 0, which proves the result.

1.4.5 *Mean value inequality*

Let *f* be a continuous function on [*a*, *b*], and differentiable on]*a*, *b*[. If there exists a constant *M* such that: $\forall x \in]a, b[: |f'(x)| \le M$, then

$$\forall x, y \in [a, b] : |f(x) - f(y)| \le M |x - y|.$$

According to the Mean value theorem on $[x, y], \exists c \in]x, y[: f'(c) = \frac{f(x) - f(y)}{x - y}$. Then

$$|f'(c)| \le M \Longrightarrow \left| \frac{f(x) - f(y)}{x - y} \right| \le M \Longrightarrow M |x - y|.$$

1.5 Increasing and Derivative Functions

Let f be a continuous function on [a, b], and differentiable on]a, b[then:

- 1. $\forall x \in]a, b[: f'(x) > 0 \iff f$ is strictly increasing on [a, b].
- 2. $\forall x \in]a, b[: f'(x) < 0 \iff f \text{ is strictly decreasing on } [a, b].$
- 3. $\forall x \in]a, b[: f'(x) = 0 \iff f \text{ is a constant.}$

1.6 L'Hôpital's Rule

L'Hôpital's rule states that for functions f and g which are differentiable on an open interval I except possibly at a point c contained in I, if $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ or $\pm \infty$, and $g'(c) \neq 0$ and $\lim_{x\to c} \frac{f'(x)}{g'(x)}$ exists, then:

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f(x)}{g(x)}.$$

Example 1.6.1. Using L'Hopital's rule:

1.
$$\lim_{x \to 0} \frac{3x - \sin x}{x} = \lim_{x \to 0} \frac{3 - \cos x}{1} = 2.$$

2.
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}}}{1} = \frac{1}{2}.$$

1.7 Convex Functions

Definition 1.7.1. A function f is said to be convex on an interval I if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y), \ \forall \ t \in [0.1], \ x, \ y \in I.$$

f is concave if -f is convex.

Theorem 1.7.1. If $f :]a, b[\longrightarrow \mathbb{R}$ has an increasing derivative, then f is convex. In particular, f is convex if $f'' \ge 0$.