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1

Differentiable Functions

1.1 The Derivative

1.1.1 Definition and basic properties

Definition 1.1.1. Let I be an interval, let f : I −→ R be a function, and let c ∈ I. If the limit

l = lim
x−→c

f (x) − f (c)
x − c

,

exists, then we say f is differentiable at c, we call ”l” the derivative of f at c, and we write

f ′(c) = l.

If f is differentiable at all c ∈ I, then we simply say that f is differentiable, and then we obtain a

function f ′ : I −→ R. The derivative is sometimes written as
d f
dx

or
d
dx

( f (x)). The expression
f (x) − f (c)

x − c
is called the difference quotient.

The graphical interpretation of the derivative is depicted in Figure 1.2. The left-hand plot

gives the line through (c, f (c)) and (x, f (x)) with slope
f (x) − f (c)

x − c
, that is, the so-called secant

line. When we take the limit as x goes to c, we get the right-hand plot, where we see that the

derivative of the function at the point c is the slope of the line tangent to the graph of f at the

point (c, f (c)).
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v CHAPTER 1. DIFFERENTIABLE FUNCTIONS2 Y.CHELLOUF

Figure 1.1: Graphical interpretation of the derivative

Example 1.1.1. Let f (x) = x2 defined on the whole real line, and let c ∈ R be arbitrary. We find

that if x , c,

x2 − c2

x − c
=

(x + c)(x − c)
x − c

= x + c.

Therefore,

f ′(c) = lim
x−→c

x2 − c2

x − c
= lim

x−→c
(x + c) = 2c.

Example 1.1.2. The function f (x) =
√

x is differentiable for x > 0. To see this fact, fix c > 0,

and suppose x , c and x > 0. Compute

√
x −
√

c
x − c

=

√
x −
√

c
(
√

x −
√

c)(
√

x +
√

c)
=

1
√

x +
√

c
.

Therefore,

f ′(c) = lim
x−→c

√
x −
√

c
x − c

= lim
x−→c

1
√

x +
√

c
=

1
2
√

c
.

Remark 1.1.1. By setting x − c = h, the previous limit can be written in the form

f ′(c) = lim
h−→0

f (c + h) − f (c)
h

.

Proposition 1.1.1. Let f : I −→ R be differentiable at c ∈ I, then it is continuous at c.

Proof 1. We know the limits
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v CHAPTER 1. DIFFERENTIABLE FUNCTIONS3 Y.CHELLOUF

lim
x−→c

f (x) − f (c)
x − c

= f ′(c), and lim
x−→c

(x − c) = 0.

exist. Furthermore,

f (x) − f (c) =

(
f (x) − f (c)

x − c

)
(x − c),

Therefore, the limit of f (x) − f (c) exists and

lim
x−→c

( f (x) − f (c)) =

(
lim
x−→c

f (x) − f (c)
x − c

) (
lim
x−→c

(x − c)
)

= f ′(c).0 = 0.

Hence lim
x−→c

f (x) = f (c), and f is continuous at c.

Proposition 1.1.2. If f is differentiable over I, then f is continuous over I.

Proposition 1.1.3. Let I be an interval, let f : I −→ R and g : I −→ R be differentiable at c ∈ I,

and let α ∈ R, then:

1. The linearity:

• Define h : I −→ R by h(x) = α. f (x). Then h is differentiable at c and h′(c) = α. f ′(c).

• Define h : I −→ R by h(x) = f (x) + g(x). Then h is differentiable at c and

h′(c) = f ′(c) + g′(c).

2. Product rule:

If h : I −→ R is defined by h(x) = g(x) f (x), then h is differentiable at c and

h′(c) = f (c)g′(c) + f ′(c)g(c).

3. Quotient rule:

If g(x) , 0 for all x ∈ I, and if h : I −→ R is defined by h(x) =
f (x)
g(x)

, then h is differentiable

at c and

h′(c) =
f ′(c)g(c) − f (c)g′(c)

(g(c))2 .
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v CHAPTER 1. DIFFERENTIABLE FUNCTIONS4 Y.CHELLOUF

1.1.2 Chain rule

Proposition 1.1.4. Let I, J be intervals, let g : I −→ J be differentiable at c ∈ I, and f : J −→ R

be differentiable at g(c). If h : I −→ R is defined by

h(x) = ( f ◦ g)(x) = f (g(x)),

then h is differentiable at c and

h′(c) = f ′(g(c))g′(c).

1.1.3 Inverse function

Proposition 1.1.5. Let I ⊂ R be an interval, and let f be an injective and continuous function

on I. If f is differentiable at point c with f ′(c) , 0, then the inverse function: f −1 : f (I) −→ R is

differentiable at f (c) and

( f −1)′( f (c)) =
1

f ′(c)
.

1.2 Left and Right Derivatives

Definition 1.2.1. Suppose f : [a, b] −→ R. Then f is right-differentiable at a ≤ c < b with right

derivative f ′(c+) if

lim
>

x−→c

f (x)− f (c)
x−c = f ′(c+),

exists, and f is left-differentiable at a < c ≤ b with left derivative f ′(c−) if

lim
<

x−→c

f (x)− f (c)
x−c = f ′(c−) exists.

A function is differentiable at a < c < b if and only if the left and right derivatives exist at c and

are equal.

G4H
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Example 1.2.1. The absolute value function f (x) = |x| is left and right differentiable at 0 with

left and right derivatives

f ′(0+) = 1 and f ′(0−) = −1.

These are not equal, and f is not differentiable at 0.

1.3 Successive Derivatives and Leibnitz’s Rule

1.3.1 Successive derivatives

Let f (x) be a differentiable function on an interval I. Then the derivative f ′(x) is a

function of x and if f ′(x) is differentiable at x, then the derivative of f ′(x) at x is called second

derivative of f (x) at x and it is denoted by f ′′(x) or f (2)(x). Proceeding in this way the n − th

order derivative of f (x) is the derivative of the function f (n−1)(x) and it the denoted by f (n)(x).

Example 1.3.1. 1). Let f (x) = sin(x). Calculate f (n)(x). We have:

f (0)(x) = sin(x),

f ′(x) = f (1)(x) = cos(x) = sin(x +
π

2
),

f (2)(x) = − sin(x) = sin(x + π),

f (3)(x) = − cos(x) = sin(x +
3π
2

),

f (4)(x) = sin(x) = sin(x + 2π),
...

f (n)(x) = sin(x +
nπ
2

).

2). f (x) = ln x. Calculate f (n)(x). We have:

G5H
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f (0)(x) = ln x, f ′(x) =
1
x
,

f (2)(x) =
−1
x2 , f (3)(x) =

2
x3 ,

f (4)(x) =
−2 × 3

x4 , f (5)(x) =
2 × 3 × 4

x5 =
4!
x5 ,

...

f (n)(x) = (−1)n+1 (n − 1)!
xn , n ∈ N∗.

Definition 1.3.1. Let I be an interval of R and f be a function defined on I. It is said that f is of

class C1 on I if f is differentiable on I and f ′ continues on I. We say that f is of class Cn(I) if f

is n−times differentiable on I and if f (n) continues on I.

1.3.2 Leibnitz formula

Theorem 1.3.1. If f and g be two functions each differentiable n times on I, then f ×g is n−times

differentiable on I, and:

( f × g)(n) =

n∑
k=0

Ck
n f (n−k) g(k), Ck

n =
n!

k!(n − k)!
.

Example 1.3.2. For n = 2, we have:

( f × g)(2) = C0
2 f ′′g + C1

2 f ′g′ + C2
2 f g′′

= f ′′g + 2 f ′g′ + f g′′.

For n = 6, we have:

( f × g)(6) = C0
6 f (6)g + C1

6 f (5)g′ + C2
6 f (4)g′′ + C3

6 f (3)g(3) + C4
6 f ′′g(4) + C5

6 f ′g(5) + C6
6 f g(6)

= f (6)g + 6 f (5)g′ + 15 f (4)g′′ + 20 f (3)g(3) + 15 f ′′g(4) + 6 f ′g(5) + f g(6).

If h(x) =
(
x3 + 5x + 1

)
ex = f (x)g(x), then:

G6H
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f ′(x) = 3x2 + 5, g′(x) = ex,

f ′′(x) = 6x, g′′(x) = ex,

f (3)(x) = 6, g(3)(x) = ex,

f (4)(x) = 0, g(4)(x) = ex,

f (n)(x) = 0, ∀n ≥ 4, g(n)(x) = ex.

So:

h(n)(x) = C0
n f g(n) + C1

n f ′g(n−1) + C2
n f ′′g(n−2) + C3

n f (3)g(n−3) + C4
n f (4)g(n−4) + · · ·

= (x3 + 5x + 1)ex + n(3x2 + 5)ex +
n(n − 1)

2
(6x)ex +

n(n − 1)(n − 2)
6

6ex.

1.4 The Mean Value Theorem

1.4.1 Extreme values

Definition 1.4.1. A critical point of a function f (x), is a value c in the domain of f where f is

not differentiable or its derivative is 0 (i.e. f ′(c) = 0).

Definition 1.4.2. A function f is said to have a local maximum (local minimum) at c if f is

defined on an open interval I containing c and f (x) ≤ f (c) ( f (x) ≥ f (c)) for all x ∈ I. In either

case, f is said to have a local extremum at c.

Figure 1.2: Local extrema of f

G7H
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1.4.2 Local extremum theorem

Theorem 1.4.1. If f has a local extremum at c and if f is differentiable at c, then f ′(c) = 0.

Proof. Suppose that f has a local maximum at c. Let I be an open interval containing c such

that f (x) ≤ f (c) for all x ∈ I. Then:

f (c) − f (c)
x − c

=

 ≥ 0, i f x ∈ I and x < c,

≤ 0, i f x ∈ I and x > c.

It follows that the left-hand derivative of f at c is ≥ 0 and the right-hand derivative is ≤ 0, hence

f ′(c) = 0. The proof for the local minimum case is similar. �

1.4.3 Rolle’s theorem

Theorem 1.4.2. Let f be continuous on [a, b] and differentiable on ]a, b[. If f (a) = f (b), then

there exists a point c ∈]a, b[ such that f ′(c) = 0.

Proof. By the extreme value theorem there exist xm, xM ∈ [a, b] such that f (xm) ≤ f (x) ≤ f (xM)

for all x ∈ [a, b]. If f (xm) = f (xM), then f is a constant function and the assertion of the theorem

holds trivially. If f (xm) , f (xM), then either xm ∈]a, b[ or xM ∈]a, b[, and the conclusion follows

from the local extremum theorem. �

1.4.4 Mean value theorem

Theorem 1.4.3. If f is continuous on [a, b] and differentiable on ]a, b[, then there exists c ∈]a, b[

such that:

f (b) − f (a)
b − a

= f ′(c).

Proof. The function g : [a, b] −→ R defined by:

g(x) = f (x) − f (a) −
[

f (b) − f (a)
b − a

]
(x − a),

G8H
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is continuous on [a, b] and differentiable on ]a, b[ with

g′(x) = f ′(x) −
f (b) − f (a)

b − a
.

Moreover, g(a) = g(b) = 0. Rolle’s theorem implies that there exists a < c < b such that

g′(c) = 0, which proves the result. �

1.4.5 Mean value inequality

Let f be a continuous function on [a, b], and differentiable on ]a, b[. If there exists a

constant M such that: ∀ x ∈]a, b[: | f ′(x)| ≤ M, then

∀ x, y ∈ [a, b] : | f (x) − f (y)| ≤ M |x − y|.

According to the Mean value theorem on [x, y], ∃ c ∈]x, y[: f ′(c) =
f (x) − f (y)

x − y
. Then

| f ′(c)| ≤ M =⇒

∣∣∣∣∣ f (x) − f (y)
x − y

∣∣∣∣∣ ≤ M =⇒ M |x − y| .

1.5 Increasing and Derivative Functions

Let f be a continuous function on [a, b], and differentiable on ]a, b[ then:

1. ∀ x ∈]a, b[: f ′(x) > 0⇐⇒ f is strictly increasing on [a, b].

2. ∀ x ∈]a, b[: f ′(x) < 0⇐⇒ f is strictly decreasing on [a, b].

3. ∀ x ∈]a, b[: f ′(x) = 0⇐⇒ f is a constant.

1.6 L’Hôpital’s Rule

L’Hôpital’s rule states that for functions f and g which are differentiable on an open

interval I except possibly at a point c contained in I, if lim
x−→c

f (x) = lim
x−→c

g(x) = 0 or ±∞, and

g′(c) , 0 and lim
x−→c

f ′(x)
g′(x)

exists, then:
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lim
x−→c

f ′(x)
g′(x)

= lim
x−→c

f (x)
g(x)

.

Example 1.6.1. Using L’Hopital’s rule:

1. lim
x−→0

3x − sin x
x

= lim
x−→0

3 − cos x
1

= 2.

2. lim
x−→0

√
1 + x − 1

x
= lim

x−→0

1
2
√

1+x

1
=

1
2

.

1.7 Convex Functions

Definition 1.7.1. A function f is said to be convex on an interval I if

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y), ∀ t ∈ [0.1], x, y ∈ I.

f is concave if − f is convex.

Theorem 1.7.1. If f :]a, b[−→ R has an increasing derivative, then f is convex. In particular, f

is convex if f ′′ ≥ 0.
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