CHAPTER 4

Differentiable Functions

Dr. Chellouf yassamine Email: y.chellouf@centre-univ-mila.dz

Contents

 $\ddot{\rm ii}$

*Di*ff*erentiable Functions*

1.1 The Derivative

1.1.1 *Definition and basic properties*

Definition 1.1.1. *Let I be an interval, let f* : *I* → R *be a function, and let c* \in *I. If the limit*

$$
l = \lim_{x \to c} \frac{f(x) - f(c)}{x - c},
$$

exists, then we say f is differentiable at c, we call "l" the derivative of f at c, and we write $f'(c) = l$.

If f is differentiable at all $c \in I$ *, then we simply say that f is differentiable, and then we obtain a function* $f' : I \longrightarrow \mathbb{R}$. The derivative is sometimes written as $\frac{df}{dx}$ or $\frac{d}{dx}$ $\frac{d}{dx} (f(x))$ *. The expression f*(*x*) − *f*(*c*) $\frac{f(x)}{x-c}$ is called the difference quotient.

The graphical interpretation of the derivative is depicted in Figure [1.2.](#page-9-2) The left-hand plot gives the line through $(c, f(c))$ and $(x, f(x))$ with slope $\frac{f(x) - f(c)}{x - c}$, that is, the so-called secant line. When we take the limit as *x* goes to *c*, we get the right-hand plot, where we see that the derivative of the function at the point *c* is the slope of the line tangent to the graph of *f* at the point $(c, f(c))$.

Figure 1.1: Graphical interpretation of the derivative

Example 1.1.1. Let $f(x) = x^2$ defined on the whole real line, and let $c \in \mathbb{R}$ be arbitrary. We find *that if* $x \neq c$ *,*

$$
\frac{x^2 - c^2}{x - c} = \frac{(x + c)(x - c)}{x - c} = x + c.
$$

Therefore,

$$
f'(c) = \lim_{x \to c} \frac{x^2 - c^2}{x - c} = \lim_{x \to c} (x + c) = 2c.
$$

Example 1.1.2. *The function* $f(x) =$ √ \overline{x} *is differentiable for* $x > 0$ *. To see this fact, fix c* > 0*, and suppose* $x \neq c$ *and* $x > 0$ *. Compute*

$$
\frac{\sqrt{x} - \sqrt{c}}{x - c} = \frac{\sqrt{x} - \sqrt{c}}{(\sqrt{x} - \sqrt{c})(\sqrt{x} + \sqrt{c})} = \frac{1}{\sqrt{x} + \sqrt{c}}.
$$

Therefore,

$$
f'(c) = \lim_{x \to c} \frac{\sqrt{x} - \sqrt{c}}{x - c} = \lim_{x \to c} \frac{1}{\sqrt{x} + \sqrt{c}} = \frac{1}{2\sqrt{c}}.
$$

Remark 1.1.1. *By setting* $x - c = h$, the previous limit can be written in the form

$$
f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.
$$

Proposition 1.1.1. *Let* $f: I \longrightarrow \mathbb{R}$ *be differentiable at* $c \in I$ *, then it is continuous at* c *.*

Proof 1. *We know the limits*

 \bullet 2 \bullet

$$
\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c), \quad \text{and} \quad \lim_{x \to c} (x - c) = 0.
$$

exist. Furthermore,

$$
f(x) - f(c) = \left(\frac{f(x) - f(c)}{x - c}\right)(x - c),
$$

Therefore, the limit of $f(x) - f(c)$ *exists and*

$$
\lim_{x \to c} (f(x) - f(c)) = \left(\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right) \left(\lim_{x \to c} (x - c) \right) = f'(c) \cdot 0 = 0.
$$

Hence $\lim_{x \to c} f(x) = f(c)$ *, and f is continuous at c.*

Proposition 1.1.2. *If f is differentiable over I, then f is continuous over I.*

Proposition 1.1.3. Let *I* be an interval, let $f: I \longrightarrow \mathbb{R}$ and $g: I \longrightarrow \mathbb{R}$ be differentiable at $c \in I$, *and let* $\alpha \in \mathbb{R}$ *, then:*

1. The linearity:

- Define $h: I \longrightarrow \mathbb{R}$ by $h(x) = \alpha.f(x)$. Then h is differentiable at c and $h'(c) = \alpha.f'(c)$.
- *Define* $h: I \longrightarrow \mathbb{R}$ *by* $h(x) = f(x) + g(x)$ *. Then h is differentiable at c and* $h'(c) = f'(c) + g'(c)$.

2. Product rule:

If $h: I \longrightarrow \mathbb{R}$ *is defined by* $h(x) = g(x)f(x)$ *, then h is differentiable at c and*

$$
h'(c) = f(c)g'(c) + f'(c)g(c).
$$

3. Quotient rule:

If $g(x) \neq 0$ *for all* $x \in I$ *, and if* $h: I \longrightarrow \mathbb{R}$ *is defined by* $h(x) = \frac{f(x)}{f(x)}$ $\frac{f(x)}{g(x)}$, then *h* is differentiable *at c and*

$$
h'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}.
$$

 \bullet 3 \bullet

1.1.2 *Chain rule*

Proposition 1.1.4. *Let I*, *J be intervals, let* $g: I \rightarrow J$ *be differentiable at* $c \in I$ *, and* $f: J \rightarrow \mathbb{R}$ *be differentiable at g(c). If* $h: I \longrightarrow \mathbb{R}$ *is defined by*

$$
h(x) = (f \circ g)(x) = f(g(x)),
$$

*then h is di*ff*erentiable at c and*

$$
h'(c) = f'(g(c))g'(c).
$$

1.1.3 *Inverse function*

Proposition 1.1.5. *Let I* ⊂ R *be an interval, and let f be an injective and continuous function on I.* If *f* is differentiable at point *c* with $f'(c) \neq 0$, then the inverse function: $f^{-1}: f(I) \longrightarrow \mathbb{R}$ is *di*ff*erentiable at f*(*c*) *and*

$$
(f^{-1})'(f(c)) = \frac{1}{f'(c)}.
$$

1.2 Left and Right Derivatives

Definition 1.2.1. *Suppose* f : [a , b] → \mathbb{R} *. Then* f *is right-differentiable at* $a ≤ c < b$ *with right derivative* $f'(c^+)$ *if*

$$
\lim_{x \to c} \frac{f(x)-f(c)}{x-c} = f'(c^+),
$$

exists, and f is left-differentiable at $a < c \leq b$ *with left derivative* $f'(c^-)$ *if*

$$
\lim_{x \to c} \frac{f(x)-f(c)}{x-c} = f'(c^-) \text{ exists.}
$$

*A function is di*ff*erentiable at ^a* < *^c* < *^b if and only if the left and right derivatives exist at ^c and are equal.*

 44

Example 1.2.1. *The absolute value function* $f(x) = |x|$ *is left and right differentiable at* 0 *with left and right derivatives*

 $f'(0^+) = 1$ *and* $f'(0^-) = -1$ *.*

*These are not equal, and f is not di*ff*erentiable at* 0*.*

1.3 Successive Derivatives and Leibnitz's Rule

1.3.1 *Successive derivatives*

Let $f(x)$ be a differentiable function on an interval *I*. Then the derivative $f'(x)$ is a function of *x* and if $f'(x)$ is differentiable at *x*, then the derivative of $f'(x)$ at *x* is called second derivative of $f(x)$ at *x* and it is denoted by $f''(x)$ or $f^{(2)}(x)$. Proceeding in this way the $n - th$ order derivative of $f(x)$ is the derivative of the function $f^{(n-1)}(x)$ and it the denoted by $f^{(n)}(x)$.

Example 1.3.1. *1*). Let $f(x) = \sin(x)$. Calculate $f^{(n)}(x)$. We have:

$$
f^{(0)}(x) = \sin(x),
$$

\n
$$
f'(x) = f^{(1)}(x) = \cos(x) = \sin(x + \frac{\pi}{2}),
$$

\n
$$
f^{(2)}(x) = -\sin(x) = \sin(x + \pi),
$$

\n
$$
f^{(3)}(x) = -\cos(x) = \sin(x + \frac{3\pi}{2}),
$$

\n
$$
f^{(4)}(x) = \sin(x) = \sin(x + 2\pi),
$$

\n
$$
\vdots
$$

\n
$$
f^{(n)}(x) = \sin(x + \frac{n\pi}{2}).
$$

2). $f(x) = \ln x$. Calculate $f^{(n)}(x)$. We have:

Definition 1.3.1. *Let I be an interval of* R *and f be a function defined on I. It is said that f is of* class C^1 on I if f is differentiable on I and f' continues on I. We say that f is of class $C^n(I)$ if f *is n–times differentiable on I and if* $f⁽ⁿ⁾$ continues on I.

1.3.2 *Leibnitz formula*

Theorem 1.3.1. *If* f *and* g *be two functions each differentiable* n *times on* I *, then* $f \times g$ *is* n −*times di*ff*erentiable on I, and:*

$$
(f \times g)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)}, C_n^k = \frac{n!}{k!(n-k)!}.
$$

Example 1.3.2. *For n* = 2*, we have:*

$$
(f \times g)^{(2)} = C_2^0 f'' g + C_2^1 f' g' + C_2^2 f g''
$$

$$
= f'' g + 2f' g' + f g''.
$$

For $n = 6$ *, we have:*

$$
(f \times g)^{(6)} = C_6^0 f^{(6)} g + C_6^1 f^{(5)} g' + C_6^2 f^{(4)} g'' + C_6^3 f^{(3)} g^{(3)} + C_6^4 f'' g^{(4)} + C_6^5 f' g^{(5)} + C_6^6 f g^{(6)}
$$

= $f^{(6)} g + 6 f^{(5)} g' + 15 f^{(4)} g'' + 20 f^{(3)} g^{(3)} + 15 f'' g^{(4)} + 6 f' g^{(5)} + f g^{(6)}$.

If $h(x) = (x^3 + 5x + 1) e^x = f(x)g(x)$ *, then:*

So:

$$
h^{(n)}(x) = C_n^0 f g^{(n)} + C_n^1 f' g^{(n-1)} + C_n^2 f'' g^{(n-2)} + C_n^3 f^{(3)} g^{(n-3)} + C_n^4 f^{(4)} g^{(n-4)} + \cdots
$$

=
$$
(x^3 + 5x + 1)e^x + n(3x^2 + 5)e^x + \frac{n(n-1)}{2}(6x)e^x + \frac{n(n-1)(n-2)}{6}6e^x.
$$

1.4 The Mean Value Theorem

1.4.1 *Extreme values*

Definition 1.4.1. A critical point of a function $f(x)$, is a value c in the domain of f where f is *not differentiable or its derivative is* 0 *(i.e.* $f'(c) = 0$ *).*

Definition 1.4.2. *A function f is said to have a local maximum (local minimum) at c if f is defined on an open interval I containing* c *and* $f(x) \leq f(c)$ ($f(x) \geq f(c)$) *for all* $x \in I$ *. In either case, f is said to have a local extremum at c.*

Figure 1.2: Local extrema of *f*

 47_b

1.4.2 *Local extremum theorem*

Theorem 1.4.1. If f has a local extremum at c and if f is differentiable at c, then $f'(c) = 0$.

Proof. Suppose that *f* has a local maximum at *c*. Let *I* be an open interval containing *c* such that $f(x) \leq f(c)$ for all $x \in I$. Then:

$$
\frac{f(c) - f(c)}{x - c} = \begin{cases} \ge 0, & \text{if } x \in I \text{ and } x < c, \\ \le 0, & \text{if } x \in I \text{ and } x > c. \end{cases}
$$

It follows that the left-hand derivative of *f* at *c* is \geq 0 and the right-hand derivative is \leq 0, hence $f'(c) = 0$. The proof for the local minimum case is similar.

1.4.3 *Rolle's theorem*

Theorem 1.4.2. Let f be continuous on [a, b] and differentiable on]a, b[. If $f(a) = f(b)$, then *there exists a point c* \in *[a, b*[*such that f'(c)* = 0.

Proof. By the extreme value theorem there exist x_m , $x_M \in [a, b]$ such that $f(x_m) \le f(x) \le f(x_M)$ for all $x \in [a, b]$. If $f(x_m) = f(x_M)$, then *f* is a constant function and the assertion of the theorem holds trivially. If $f(x_m) \neq f(x_M)$, then either $x_m \in]a, b[$ or $x_M \in]a, b[$, and the conclusion follows from the local extremum theorem.

1.4.4 *Mean value theorem*

Theorem 1.4.3. If f is continuous on [a, b] and differentiable on [a, b], then there exists $c \in]a,b[$ *such that:*

$$
\frac{f(b) - f(a)}{b - a} = f'(c).
$$

Proof. The function $g : [a, b] \longrightarrow \mathbb{R}$ defined by:

$$
g(x) = f(x) - f(a) - \left[\frac{f(b) - f(a)}{b - a} \right] (x - a),
$$

is continuous on [*a*, *^b*] and differentiable on]*a*, *^b*[with

$$
g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.
$$

Moreover, $g(a) = g(b) = 0$. Rolle's theorem implies that there exists $a < c < b$ such that $g'(c) = 0$, which proves the result.

1.4.5 *Mean value inequality*

Let f be a continuous function on [a, b], and differentiable on [a, b]. If there exists a constant *M* such that: $\forall x \in]a, b[: |f'(x)| \le M$, then

$$
\forall x, y \in [a, b]: |f(x) - f(y)| \le M |x - y|.
$$

According to the Mean value theorem on [*x*, *y*], $\exists c \in]x, y[$: $f'(c) = \frac{f(x) - f(y)}{x - y}$ $\frac{y}{x-y}$. Then

$$
|f'(c)| \le M \Longrightarrow \left|\frac{f(x) - f(y)}{x - y}\right| \le M \Longrightarrow M|x - y|.
$$

1.5 Increasing and Derivative Functions

Let *f* be a continuous function on [a , b], and differentiable on [a , b] then:

- 1. $\forall x \in]a, b[$: $f'(x) > 0 \Longleftrightarrow f$ is strictly increasing on [*a*, *b*].
- 2. $\forall x \in]a, b[$: $f'(x) < 0 \Longleftrightarrow f$ is strictly decreasing on [*a*, *b*].
- 3. $\forall x \in]a, b[$: $f'(x) = 0 \Longleftrightarrow f$ is a constant.

1.6 L'Hôpital's Rule

L'Hôpital's rule states that for functions *f* and *g* which are differentiable on an open interval *I* except possibly at a point *c* contained in *I*, if $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$ or $\pm \infty$, and $g'(c) \neq 0$ and $\lim_{x \to c}$ $f'(x)$ $\frac{f(x)}{g'(x)}$ exists, then:

49

$$
\lim_{x \to c} \frac{f'(x)}{g'(x)} = \lim_{x \to c} \frac{f(x)}{g(x)}.
$$

Example 1.6.1. *Using L'Hopital's rule:*

l.
$$
\lim_{x \to 0} \frac{3x - \sin x}{x} = \lim_{x \to 0} \frac{3 - \cos x}{1} = 2.
$$

2.
$$
\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1 + x}}}{1} = \frac{1}{2}.
$$

1.7 Convex Functions

Definition 1.7.1. *A function f is said to be convex on an interval I if*

$$
f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y), \ \forall \ t \in [0.1], \ x, \ y \in I.
$$

f is concave if −*f is convex.*

Theorem 1.7.1. *If* f :] a , b [→ $\mathbb R$ *has an increasing derivative, then* f *is convex. In particular,* f *is convex if* $f'' \geq 0$.