CHAPTER 3

Real-Valued Functions of a Real Variable

Dr. Chellouf yassamine Email: *y.chellouf@centre-univ-mila.dz* *Contents*

Real-Valued Functions of a Real Variable

1.1 Basics

1.1.1 *Definition*

Definition 1.1.1. *Let* $D ⊆ ℝ$ *. A function f from* D *into* ℝ *is a rule which associates with each* $x \in D$ one and only one $y \in \mathbb{R}$ *. We denote*

$$
f: D \longrightarrow \mathbb{R},
$$

$$
x \longmapsto f(x).
$$

D is called the domain of the function. If $x \in D$, then the element $y \in \mathbb{R}$ which is associated with *x* is called the value of f at x or **the image** of x under f, y is denoted by $f(x)$.

1.1.2 *Graph of a function*

Definition 1.1.2. *Each couple* (*x*, *^f*(*x*)) *corresponds to a point in the xy*−*plane. The set of all these points forms a curve called the graph of function f .*

$$
G_f = \{(x, y) | x \in D, y = f(x)\}.
$$

Figure 1.1: Graph of function $f(x) = 1/3x^3 - x$ in interval [-2, 2].

1.1.3 *Operations on functions*

Arithmetic

Let $f, g: D \longrightarrow \mathbb{R}$ be tow functions, then:

1. $(f \pm g)(x) = f(x) \pm g(x), \forall x \in D$,

2.
$$
(f.g)(x) = f(x).g(x), \forall x \in D,
$$

- 3. $\left(\frac{f}{f}\right)$ *g* ! $f(x) = \frac{f(x)}{f(x)}$ $\frac{f(x)}{g(x)}$, $g(x) \neq 0$, $\forall x \in D$,
- 4. $(\lambda f)(x) = \lambda f(x), \forall x \in D, \lambda \in \mathbb{R}.$

Composition

Let *f* : *D* → R and let $g : E$ → R, if $f(D) \subseteq E$, then *g* composed with *f* is the function $g \circ f : D \longrightarrow \mathbb{R}$ defined by $g \circ f = g[f(x)].$

Restriction

We say that g is a restriction of the function f if:

$$
g(x) = f(x)
$$
 and $D(g) \subseteq D(f)$.

Example 1.1.1. $f(x) = \ln |x|$, and $g(x) = \ln x$, $\forall x \in]0, +\infty[$: $g(x) = f(x)$, and $D(g) \subseteq D(f)$.

1.1.4 *Bounded functions*

Definition 1.1.3. *Let* $f : D \longrightarrow \mathbb{R}$ *be a function, then:*

• *We say that f is bounded below on its domain D*(*f*) *if*

$$
\forall x \in D(f), \ \exists \ m \in \mathbb{R} : \ m \le f(x).
$$

• *We say that f is bounded above on its domain D*(*f*) *if*

$$
\forall x \in D(f), \; \exists M \in \mathbb{R} : f(x) \geq M.
$$

• *Function is bounded if it is bounded below and above.*

Definition 1.1.4. *Let* $f, g : D \longrightarrow \mathbb{R}$ *be two functions, then:*

- $f \geq g$ *si* $\forall x \in D : f(x) \geq g(x)$.
- \bullet *f* ≥ 0 *si* $\forall x \in D : f(x) \ge 0$.
- \bullet *f* > 0 *si* ∀*x* ∈ *D* : *f*(*x*) > 0*.*
- *f* is said to be constant over D if $\exists a \in \mathbb{R}, \forall x \in D$: $f(x) = a$.
- *f* is said to be zero over D if $\forall x \in D$: $f(x) = 0$.

1.1.5 *Monotone functions*

Definition 1.1.5. *Consider* f : $D(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ *. For all x, y* ∈ *D, we have:*

- *f is increasing* (*or strictly increasing*) *over D if:* $x \le y \Rightarrow f(x) \le f(y)$ *,* (*or* $x < y \Rightarrow f(y)$ $f(x) < f(y)$.
- *f is decreasing* (*or strictly decreasing*) *over D if:* $x \le y \Rightarrow f(x) \ge f(y)$ *,* (*or* $x < y \Rightarrow f(y)$ $f(x) > f(y)$.

• *f is monotone (or strictly monotone) over D if f is increasing or decreasing (strictly increasing or strictly decreasing).*

Proposition 1.1.1. *A sum of two increasing (decreasing) functions is an increasing (decreasing) function.*

1.1.6 *Even and odd functions*

Definition 1.1.6. • *We say that function* $f : D(f)$ *→ ℝ <i>is even if*

$$
\forall x \in D(f): f(-x) = f(x).
$$

• We say that function $f: D(f) \longrightarrow \mathbb{R}$ is **odd** if

$$
\forall x \in D(f): f(-x) = -f(x).
$$

Remark 1.1.1. *1. Graph of an even function is symmetric with, respect to the y axis.*

- *2. Graph of an odd function is symmetric with, respect to the origin.*
- *3. Domain of an even or odd function is always symmetric with respect to the origin.*

1.1.7 *Periodic functions*

Definition 1.1.7. *A function* $f: D(f) \longrightarrow \mathbb{R}$ *is called periodic if* $\exists T \in \mathbb{R}^*$ *such that:*

- *I. x* ∈ *D*(*f*) \Rightarrow *x* \pm *T* ∈ *D*(*f*)*,*
- *2. x* ∈ *D*(*f*) : $f(x \pm T) = f(x)$ *.*

Number T is called a period of f .

1.2 Limits of Functions

1.2.1 *Definition*

Definition 1.2.1. *A set U* ⊂ ℝ *is a neighborhood of a point* $x \in \mathbb{R}$ *if:*

$$
]x-\delta,x+\delta[\subset U,
$$

for some $\delta > 0$ *. The open interval* $\left| x - \delta, x + \delta \right|$ *is called a* δ -*neighborhood of x.*

Example 1.2.1. *If* $a < x < b$ *then the closed interval* [a, b] *is a neighborhood of x, since it contains the interval* $]x - \delta$, $x + \delta$ *for sufficiently small* $\delta > 0$ *. On the other hand,* [a, b] *is not a neighborhood of the endpoints a*, *b since no open interval about a or b is contained in* [*a*, *^b*]*.*

Definition 1.2.2. Let f be a function defined in the neighborhood of x_0 except perhaps at x_0 . A *number* $l \in \mathbb{R}$ *is the limit of f at* x_0 *if:*

 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon$.

Notation: $\lim_{x\to x_0} f(x) = l$.

Example 1.2.2. *Let*

$$
f: \mathbb{R} \longrightarrow \mathbb{R}
$$

$$
x \longrightarrow 5x-3
$$

Show that $\lim_{x\to 1} f(x) = 2$ *.*

By definition: $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \neq 1$: $|x - 1| < \delta \Rightarrow |f(x) - 1| < \varepsilon$. So we have:

$$
\forall \varepsilon > 0, \ |5x - 3 - 2| < \varepsilon \Rightarrow |5x - 5| < \varepsilon \Rightarrow 5|x - 1| < \varepsilon.
$$

Then: $|x - 1| < \frac{e}{5}$, so $\exists \delta = \frac{e}{5} > 0$ such that $\lim_{x \to 1} f(x) = 2$.

1.2.2 *Right and left limits*

Definition 1.2.3. Let f be a function defined in the neighborhood of x_0 .

• We say that f has a limit l to the right of x_0 if:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x_0 < x < x_0 + \delta \Rightarrow |f(x) - l| < \varepsilon.$

We write $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0} f(x) = l$.

• We say that f has a limit l to the left of x_0 if:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x_0 - \delta < x < x_0 \Rightarrow |f(x) - \ell| < \varepsilon.$

We write $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0} f(x) = l$.

• *If f admits a limit at the point x*⁰ *then:*

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l.$

Example 1.2.3. *Consider the integer part function at the point* $x = 2$ *.*

Figure 1.2: Graph of function $f(x) = E(x)$.

- *Since* $x \in]2, 3[$ *, we have:* $E(x) = 2$ *, and* $\lim_{x \to 2^+} E(x) = 2$ *.*
- *Since* $x \in]1, 2[$ *, we have:* $E(x) = 1$ *, and* $\lim_{x \to 2^{-}} E(x) = 1$ *.*

Since these two limits are different, it is deduced that $f(x) = E(x)$ *has no limit at* $x = 2$ *.*

Theorem 1.2.1. If $\lim_{x\to x_0} f(x)$ exists, then it is unique. That is, f can have only one limit at x_0 .

Proposition 1.2.1. *If* $\lim_{x \to x_0} f(x) = l$, and $\lim_{x \to x_0} g(x) = l'$, $l, l' \in \mathbb{R}$, then:

- *1.* $\lim_{x \to x_0} (\lambda f)(x) = \lambda \lim_{x \to x_0} f(x) = \lambda \cdot l, \forall \lambda \in \mathbb{R}.$
- 2. $\lim_{x \to x_0} (f + g)(x) = l + l'$, and $\lim_{x \to x_0} (f \times g)(x) = l \times l'$.
- *3. If* $l \neq 0$ *, then* $\lim_{x \to x_0} \left(\frac{l}{f(n)} \right)$ *f*(*x*) $=\frac{1}{7}$ *l .*
- *4.* $\lim_{x \to x_0} g \circ f = l'.$
- 5. $\lim_{x\to x_0} \left(\frac{f(x)}{g(x)} \right)$ *g*(*x*) $= \frac{l}{\nu}$ $\frac{l}{l'}$, $l' \neq 0$.

6.
$$
\lim_{x \to x_0} |f(x)| = |l|
$$
.

7. If
$$
f \leq g
$$
, then $l \leq l'$.

8. If $f(x) \le g(x) \le h(x)$, and $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \in \mathbb{R}$, then $\lim_{x \to x_0} g(x) = l$.

1.2.3 *Infinite limits*

Definition 1.2.4. *(Limits as* $\longrightarrow \pm \infty$ *)*

- \bullet lim_{*x→+∞ f*(*x*) = *l* ⇔ \forall ε > 0, ∃ *A* > 0, \forall *x* ∈ ℝ : *x* > *A* ⇒ $|f(x) l|$ < ε.}
- \bullet lim_{x→−∞} $f(x) = l \Leftrightarrow \forall \varepsilon > 0, \exists A > 0, \forall x \in \mathbb{R}: x < -A \Rightarrow |f(x) l| < \varepsilon.$
- \bullet lim_{*x*→+∞} $f(x) = +\infty$ (resp: lim_{*x*→+∞} $f(x) = -\infty$) ⇔ $\forall A > 0$, $\exists B > 0$, $\forall x \in \mathbb{R}$: $x > B \Rightarrow$ *f*(*x*) > *A*, (*resp:* ∀*A* > 0, ∃ *B* > 0, ∀*x* ∈ ℝ : *x* > *B* ⇒ *f*(*x*) < −*A*).
- \bullet lim_{*x*→−∞} $f(x) = +\infty$ (resp: lim_{*x*→−∞} $f(x) = -\infty$) ⇔ $\forall A > 0$, $\exists B > 0$, $\forall x \in \mathbb{R}$: $x <$ $-B \Rightarrow f(x) > A$, (resp: $\forall A > 0$, $\exists B > 0$, $\forall x \in \mathbb{R} : x < -B \Rightarrow f(x) < -A$).

1.3 Continuous Functions

1.3.1 *Continuity at a point*

Definition 1.3.1. *Let* $f : I \longrightarrow \mathbb{R}$ *, where* $I \subset \mathbb{R}$ *, and let* $x_0 \in I$ *. Then* f *is continuous at* x_0 *if:*

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : |x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$

In another word: $\lim_{x\to x_0} f(x) = f(x_0)$ *.*

Figure 1.3: For $|x - x_0| < \delta$, the graph of $f(x)$ should be within the gray region.

A function $f: I \longrightarrow \mathbb{R}$ *is continuous on a set* $J \subset I$ *if it is continuous at every point in J*, *and continuous if it is continuous at every point of its domain I.*

1.3.2 *Left and right continuity*

Definition 1.3.2. *Let* $f: I \longrightarrow \mathbb{R}$ *, we say that:*

- *f* is continuous on the right of $x_0 \in I$ if: $\lim_{x \to x_0} f(x) = f(x_0)$.
- *f* is continuous on the left of $x_0 \in I$ if: $\lim_{x \to x_0} f(x) = f(x_0)$.
- *f* is continuous on $x_0 \in I$ if: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0)$.

Example 1.3.1. *Let*

$$
f: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+
$$

$$
x \longrightarrow f(x) = \sqrt{x}
$$

We show that f is continuous at every point $x_0 \in \mathbb{R}^*_+$, *i.e.*

$$
\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x \in \mathbb{R}_+^* : \ |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon,
$$

then, $\forall \varepsilon > 0$ *we have:*

$$
|f(x) - f(x_0)| < \varepsilon \implies \left| \sqrt{x} - \sqrt{x_0} \right| < \varepsilon
$$
\n
$$
\implies \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| < \varepsilon
$$
\n
$$
\implies \left| \frac{x - x_0}{\sqrt{x} - \sqrt{x_0}} \right| < \varepsilon \implies |x - x_0| < \varepsilon \left(\sqrt{x} - \sqrt{x_0} \right).
$$

 S *o* ∃ δ = ε $\left(\sqrt{x}-\sqrt{y}\right)$ $\overline{x_0}$) such that: $|f(x) - f(x_0)| < \varepsilon$, then f is continous at x_0 .

1.3.3 *Properties of continuous functions*

Theorem 1.3.1. *If f*, *g* : *I* → R *are continuous function at* $x_0 \in I$ *and* $k \in \mathbb{R}$ *, then* $k.f, f + g$ *, and f.g are continuous at* x_0 *. Moreover, if* $g(x_0) \neq 0$ *then f/g is continuous at* x_0 *.*

Theorem 1.3.2. *Let* $f : I \longrightarrow \mathbb{R}$ *and* $g : J \longrightarrow \mathbb{R}$ *where* $f(I) \subset J$ *. If* f *is continuous at* $x_0 \in I$ *and g is continuous at* $f(x_0) \in J$, then $g \circ f : I \longrightarrow \mathbb{R}$ *is continuous at* x_0 *.*

Proposition 1.3.1. *Let* $f : I \longrightarrow \mathbb{R}$ *and* $x_0 \in I$ *, then:*

f is continuous at $x_0 \implies$ *for any sequence* (u_n) *that converges to* x_0 *, the sequence* $(f(u_n))$ *converges to* $f(x_0)$ *.*

1.3.4 *Continuous extension to a point*

Definition 1.3.3. Let f be a function defined in the neighborhood of x_0 except at x_0 ($x_0 \notin D_f$), *and* $\lim_{x\to x_0} f(x) = l$. Then the function which is defined by

49

$$
\widetilde{f} = \begin{cases} f(x) & : x \neq x_0, \\ l & : x = x_0. \end{cases}
$$

is continuous at x_0 *.* \tilde{f} *is the continuous extension of* f *at* x_0 *.*

Example 1.3.2. *Show that:*

$$
f(x) = \frac{x^2 + x - 6}{x^2 - 4}, \ x \neq 2.
$$

has a continuous extension to x = 2*, and find that extension.*

Solution:

lim_{*x*→2} $f(x) = \lim_{x \to 2}$ $x^2 + x - 6$ $\frac{x^2-4}{x^2-4}$ = $\lim_{x\to 2}$ $(x-2)(x+3)$ $\frac{(x-2)(x+3)}{(x-2)(x+2)} = \frac{5}{4}$ 4 *, exists. So f has a continuous extension at x* = 2 *defined by*

$$
\tilde{f} = \begin{cases}\n\frac{x^2 + x - 6}{x^2 - 4} & : x \neq 2, \\
\frac{5}{4} & : x = 2.\n\end{cases}
$$

1.3.5 *Discontinuous functions*

When *f* is not continuous at x_0 , we say *f* is discontinuous at x_0 , or that it has a discontinuity at x_0 .

We say that the function f is not continuous in the following cases:

- 1. If *f* is not defined at x_0 , then *f* is discontinuous at x_0 .
- 2. If *f* defined in the neighborhood of x_0 , then *f* is discontinuous at x_0 if

$$
\exists \varepsilon > 0, \ \forall \delta > 0, \ \exists \ x \in I : \ |x - x_0| < \delta, \ and \ |f(x) - f(x_0)| \geq \varepsilon.
$$

- 3. If $\lim_{x \to x_0} f(x) \neq \lim_{x \to x_0} f(x)$, then *f* is discontinuous at x_0 , and x_0 is a discontinuous point of the first kind.
- 4. If one of the two limits $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} f(x)$ or both limits does not exist or are not finite, then *f* is discontinuous at x_0 , and x_0 is a discontinuous point of the second kind.
- 5. If $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \neq f(x_0)$, then *f* is discontinuous at *x*₀.

1.3.6 *Uniform continuity*

Definition 1.3.4. *Let* $f: I \longrightarrow \mathbb{R}$ *. Then* f *is uniformly continuous on I if:*

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x', x'' \in I : |x' - x''| < \delta \Longrightarrow |f(x') - f(x'')| < \varepsilon.$

Lemma 1.3.1. *Let* $f: I \longrightarrow \mathbb{R}$ *be a function. If* f *is uniformly continuous, then* f *is continuous.*

1.3.7 *The intermediate value theorem*

Theorem 1.3.3. *Suppose that* $f : [a, b] \longrightarrow \mathbb{R}$ *is a continuous function on a closed bounded interval. Then for every d strictly between* $f(a)$ *and* $f(b)$ *there is a point* $a < c < b$ *such that* $f(c) = d$.

Corollary 1.3.1. *Suppose that* $f : [a, b] \longrightarrow \mathbb{R}$ *is a continuous function on a closed bounded interval. If* $f(a) \cdot f(b) < 0$ *, then there is a point a* $< c < b$ *such that* $f(c) = 0$ *.*

Corollary 1.3.2. *Let* $f : D \longrightarrow \mathbb{R}$ *is a continuous function and* $I ⊆ D$ *is an interval, then* $f(I)$ *is an interval.*

Theorem 1.3.4. *Let* $I = [a, b]$ *be a closed interval, and* $f : [a, b] \rightarrow \mathbb{R}$ *be a continuous function. Then f is uniformly continuous.*

Theorem 1.3.5. *Any continuous function on a closed interval* [*a*, *^b*] *is bounded on* [*a*, *^b*]*, i.e:* $\sup_{[a,b]} |f(x)| < +\infty$. $[a,b]$

Remark 1.3.1. *1. The image by a continuous function of a closed interval of* R *is a closed interval.*

2. If I is not closed then the interval f(*I*) *is not necessarily of the nature of I. For example:* $f(x) = x^2$, then $f($] – 1, 1[) = [0, 1[*.*

1.3.8 *Fixed point theorem*

Definition 1.3.5. *Let f* : *I* → *I* and let $x \in I$, we say that $x \in I$ is a fixed point of *f* if: $f(x) = x$.

Theorem 1.3.6. *Let* $f : [a, b] \rightarrow [a, b]$ *be a continuous function, then* f *admits at least one fixed point in* $[a, b]$ *i.e:* $\exists x \in [a, b]$ *such that* $f(x) = x$.