Real-Valued Functions of a Real Variable

Dr. Chellouf yassamine Email: y.chellouf@centre-univ-mila.dz **Contents**

Real-Valued Functions of a Real Variable

1.1 Basics

1.1.1 Definition

Definition 1.1.1. Let $D \subseteq \mathbb{R}$. A function f from D into \mathbb{R} is a rule which associates with each $x \in D$ one and only one $y \in \mathbb{R}$. We denote

$$\begin{array}{rccc} f:D & \longrightarrow & \mathbb{R}, \\ & x & \longmapsto & f(x) \end{array}$$

D is called the domain of the function. If $x \in D$, then the element $y \in \mathbb{R}$ which is associated with *x* is called the value of *f* at *x* or **the image** of *x* under *f*, *y* is denoted by f(x).

1.1.2 Graph of a function

Definition 1.1.2. Each couple (x, f(x)) corresponds to a point in the xy-plane. The set of all these points forms a curve called the graph of function f.

$$G_f = \{(x, y) | x \in D, y = f(x)\}.$$

Figure 1.1: Graph of function $f(x) = 1/3x^3 - x$ in interval [-2, 2].

1.1.3 Operations on functions

Arithmetic

Let $f, g: D \longrightarrow \mathbb{R}$ be tow functions, then:

1. $(f \pm g)(x) = f(x) \pm g(x), \forall x \in D$,

2.
$$(f.g)(x) = f(x).g(x), \forall x \in D$$
,

- 3. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, \forall x \in D,$
- 4. $(\lambda f)(x) = \lambda f(x), \forall x \in D, \lambda \in \mathbb{R}.$

Composition

Let $f : D \longrightarrow \mathbb{R}$ and let $g : E \longrightarrow \mathbb{R}$, if $f(D) \subseteq E$, then g composed with f is the function $g \circ f : D \longrightarrow \mathbb{R}$ defined by $g \circ f = g[f(x)]$.

Restriction

We say that g is a restriction of the function f if:

$$g(x) = f(x)$$
 and $D(g) \subseteq D(f)$.

Example 1.1.1. $f(x) = \ln |x|$, and $g(x) = \ln x$, $\forall x \in]0, +\infty[: g(x) = f(x), and D(g) \subseteq D(f).$

1.1.4 Bounded functions

Definition 1.1.3. *Let* $f : D \longrightarrow \mathbb{R}$ *be a function, then:*

• We say that f is **bounded below** on its domain D(f) if

 $\forall x \in D(f), \ \exists \ m \in \mathbb{R} : \ m \le f(x).$

• We say that f is **bounded above** on its domain D(f) if

 $\forall x \in D(f), \ \exists \ M \in \mathbb{R} : \ f(x) \ge M.$

• Function is **bounded** if it is bounded below and above.

Definition 1.1.4. *Let* $f, g : D \longrightarrow \mathbb{R}$ *be two functions, then:*

- $f \ge g \ si \ \forall x \in D : \ f(x) \ge g(x).$
- $f \ge 0$ si $\forall x \in D$: $f(x) \ge 0$.
- f > 0 si $\forall x \in D : f(x) > 0$.
- *f* is said to be constant over *D* if $\exists a \in \mathbb{R}, \forall x \in D : f(x) = a$.
- *f* is said to be zero over D if $\forall x \in D$: f(x) = 0.

1.1.5 Monotone functions

Definition 1.1.5. Consider $f : D(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$. For all $x, y \in D$, we have:

- f is increasing (or strictly increasing) over D if: $x \le y \Rightarrow f(x) \le f(y)$, (or $x < y \Rightarrow f(x) < f(y)$).
- f is decreasing (or strictly decreasing) over D if: $x \le y \Rightarrow f(x) \ge f(y)$, (or $x < y \Rightarrow f(x) > f(y)$).

• *f* is monotone (or strictly monotone) over *D* if *f* is increasing or decreasing (strictly increasing or strictly decreasing).

Proposition 1.1.1. A sum of two increasing (decreasing) functions is an increasing (decreasing) function.

1.1.6 Even and odd functions

Definition 1.1.6. • We say that function $f : D(f) \longrightarrow \mathbb{R}$ is even if

$$\forall x \in D(f) : f(-x) = f(x).$$

• We say that function $f : D(f) \longrightarrow \mathbb{R}$ is odd if

$$\forall x \in D(f) : f(-x) = -f(x).$$

Remark 1.1.1. *1. Graph of an even function is symmetric with, respect to the y axis.*

- 2. Graph of an odd function is symmetric with, respect to the origin.
- 3. Domain of an even or odd function is always symmetric with respect to the origin.

1.1.7 Periodic functions

Definition 1.1.7. A function $f : D(f) \longrightarrow \mathbb{R}$ is called **periodic** if $\exists T \in \mathbb{R}^*$ such that:

- 1. $x \in D(f) \Rightarrow x \pm T \in D(f)$,
- 2. $x \in D(f) : f(x \pm T) = f(x)$.

Number T is called a period of f.

1.2 Limits of Functions

1.2.1 Definition

Definition 1.2.1. A set $U \subset \mathbb{R}$ is a neighborhood of a point $x \in \mathbb{R}$ if:

$$]x - \delta, x + \delta[\subset U,$$

for some $\delta > 0$. The open interval $]x - \delta, x + \delta[$ is called a δ -neighborhood of x.

Example 1.2.1. If a < x < b then the closed interval [a, b] is a neighborhood of x, since it contains the interval $]x - \delta$, $x + \delta$ [for sufficiently small $\delta > 0$. On the other hand, [a, b] is not a neighborhood of the endpoints a, b since no open interval about a or b is contained in [a, b].

Definition 1.2.2. *Let* f *be a function defined in the neighborhood of* x_0 *except perhaps at* x_0 *. A number* $l \in \mathbb{R}$ *is the limit of* f *at* x_0 *if:*

$$\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x \neq x_0 : \ |x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon.$$

Notation: $\lim_{x\to x_0} f(x) = l$.

Example 1.2.2. Let

$$\begin{array}{rccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longrightarrow & 5x - 3 \end{array}$$

Show that $\lim_{x\to 1} f(x) = 2$.

By definition: $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \neq 1$: $|x - 1| < \delta \Rightarrow |f(x) - l| < \varepsilon$. So we have:

$$\forall \varepsilon > 0, \ |5x - 3 - 2| < \varepsilon \Rightarrow |5x - 5| < \varepsilon \Rightarrow 5 |x - 1| < \varepsilon.$$

Then: $|x-1| < \frac{\varepsilon}{5}$, so $\exists \delta = \frac{\varepsilon}{5} > 0$ such that $\lim_{x \to 1} f(x) = 2$.

1.2.2 Right and left limits

Definition 1.2.3. Let f be a function defined in the neighborhood of x_0 .

• We say that f has a limit l to the right of x_0 if:

 $\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x_0 < x < x_0 + \delta \Rightarrow |f(x) - l| < \varepsilon.$

We write $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l$.

• We say that f has a limit l to the left of x_0 if:

 $\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x_0 - \delta < x < x_0 \Rightarrow |f(x) - l| < \varepsilon.$

We write $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^-} f(x) = l.$

• If f admits a limit at the point x₀ then:

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = l.$

Example 1.2.3. *Consider the integer part function at the point* x = 2*.*

Figure 1.2: Graph of function f(x) = E(x).

- Since $x \in [2, 3[$, we have: E(x) = 2, and $\lim_{x\to 2^+} E(x) = 2$.
- Since $x \in [1, 2[$, we have: E(x) = 1, and $\lim_{x\to 2^-} E(x) = 1$.

Since these two limits are different, it is deduced that f(x) = E(x) has no limit at x = 2.

Theorem 1.2.1. If $\lim_{x\to x_0} f(x)$ exists, then it is unique. That is, f can have only one limit at x_0 .

Proposition 1.2.1. If $\lim_{x\to x_0} f(x) = l$, and $\lim_{x\to x_0} g(x) = l'$, $l, l' \in \mathbb{R}$, then:

- 1. $\lim_{x \to x_0} (\lambda.f)(x) = \lambda. \lim_{x \to x_0} f(x) = \lambda.l, \forall \lambda \in \mathbb{R}.$
- 2. $\lim_{x \to x_0} (f + g)(x) = l + l'$, and $\lim_{x \to x_0} (f \times g)(x) = l \times l'$.
- 3. If $l \neq 0$, then $\lim_{x \to x_0} \left(\frac{1}{f(x)} \right) = \frac{1}{l}$.
- 4. $\lim_{x \to x_0} g \circ f = l'.$
- 5. $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{l}{l'}, \ l' \neq 0.$
- 6. $\lim_{x \to x_0} |f(x)| = |l|$.

7. If
$$f \leq g$$
, then $l \leq l'$.

8. If $f(x) \le g(x) \le h(x)$, and $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l \in \mathbb{R}$, then $\lim_{x \to x_0} g(x) = l$.

1.2.3 Infinite limits

Definition 1.2.4. (*Limits as* $\rightarrow \pm \infty$)

- $\lim_{x\to+\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \ \exists A > 0, \ \forall x \in \mathbb{R} : x > A \Rightarrow |f(x) l| < \varepsilon.$
- $\lim_{x\to -\infty} f(x) = l \Leftrightarrow \forall \varepsilon > 0, \ \exists A > 0, \ \forall x \in \mathbb{R} : x < -A \Rightarrow |f(x) l| < \varepsilon.$
- $\lim_{x \to +\infty} f(x) = +\infty$ (resp: $\lim_{x \to +\infty} f(x) = -\infty$) $\Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in \mathbb{R} : x > B \Rightarrow f(x) > A$, (resp: $\forall A > 0, \exists B > 0, \forall x \in \mathbb{R} : x > B \Rightarrow f(x) < -A$).
- $\lim_{x \to -\infty} f(x) = +\infty$ (resp: $\lim_{x \to -\infty} f(x) = -\infty$) $\Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in \mathbb{R} : x < -B \Rightarrow f(x) > A$, (resp: $\forall A > 0, \exists B > 0, \forall x \in \mathbb{R} : x < -B \Rightarrow f(x) < -A$).

1.3 Continuous Functions

1.3.1 Continuity at a point

Definition 1.3.1. Let $f : I \longrightarrow \mathbb{R}$, where $I \subset \mathbb{R}$, and let $x_0 \in I$. Then f is continuous at x_0 if:

 $\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x \in I : \ |x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$

In another word: $\lim_{x\to x_0} f(x) = f(x_0)$.

Figure 1.3: For $|x - x_0| < \delta$, the graph of f(x) should be within the gray region.

A function $f : I \longrightarrow \mathbb{R}$ is continuous on a set $J \subset I$ if it is continuous at every point in J, and continuous if it is continuous at every point of its domain I.

1.3.2 Left and right continuity

Definition 1.3.2. *Let* $f : I \longrightarrow \mathbb{R}$ *, we say that:*

- *f* is continuous on the right of $x_0 \in I$ if: $\lim_{x \to x_0} f(x) = f(x_0)$.
- *f* is continuous on the left of $x_0 \in I$ if: $\lim_{x \to x_0} f(x) = f(x_0)$.
- f is continuous on $x_0 \in I$ if: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0)$.

Example 1.3.1. Let

$$\begin{array}{rccc} f: \mathbb{R}^*_+ & \longrightarrow & \mathbb{R}_+ \\ & x & \longrightarrow & f(x) = \sqrt{x} \end{array}$$

We show that f is continuous at every point $x_0 \in \mathbb{R}^*_+$, i.e.

$$\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x \in \mathbb{R}^*_+ : \ |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon,$$

then, $\forall \varepsilon > 0$ we have:

$$\begin{split} |f(x) - f(x_0)| < \varepsilon &\Rightarrow \left| \sqrt{x} - \sqrt{x_0} \right| < \varepsilon \\ &\Rightarrow \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| < \varepsilon \\ &\Rightarrow \frac{|x - x_0|}{\sqrt{x} - \sqrt{x_0}} < \varepsilon \Rightarrow |x - x_0| < \varepsilon \left(\sqrt{x} - \sqrt{x_0} \right) \end{split}$$

So $\exists \delta = \varepsilon \left(\sqrt{x} - \sqrt{x_0} \right)$ such that: $|f(x) - f(x_0)| < \varepsilon$, then f is continous at x_0 .

1.3.3 Properties of continuous functions

Theorem 1.3.1. If $f, g : I \longrightarrow \mathbb{R}$ are continuous function at $x_0 \in I$ and $k \in \mathbb{R}$, then k.f, f + g, and f.g are continuous at x_0 . Moreover, if $g(x_0) \neq 0$ then f/g is continuous at x_0 .

Theorem 1.3.2. Let $f : I \longrightarrow \mathbb{R}$ and $g : J \longrightarrow \mathbb{R}$ where $f(I) \subset J$. If f is continuous at $x_0 \in I$ and g is continuous at $f(x_0) \in J$, then $g \circ f : I \longrightarrow \mathbb{R}$ is continuous at x_0 .

Proposition 1.3.1. *Let* $f : I \longrightarrow \mathbb{R}$ *and* $x_0 \in I$ *, then:*

f is continuous at $x_0 \Longrightarrow$ for any sequence (u_n) that converges to x_0 , the sequence $(f(u_n))$ converges to $f(x_0)$.

1.3.4 Continuous extension to a point

Definition 1.3.3. Let f be a function defined in the neighborhood of x_0 except at x_0 ($x_0 \notin D_f$), and $\lim_{x\to x_0} f(x) = l$. Then the function which is defined by

(9)

$$\tilde{f} = \begin{cases} f(x) & : \ x \neq x_0, \\ l & : \ x = x_0. \end{cases}$$

is continuous at x_0 . \tilde{f} is the continuous extension of f at x_0 .

Example 1.3.2. *Show that:*

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}, \ x \neq 2.$$

has a continuous extension to x = 2, and find that extension.

Solution:

 $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{5}{4}, \text{ exists. So } f \text{ has a continuous extension at}$ x = 2 defined by

$$\tilde{f} = \begin{cases} \frac{x^2 + x - 6}{x^2 - 4} & : \ x \neq 2, \\ \frac{5}{4} & : \ x = 2. \end{cases}$$

1.3.5 Discontinuous functions

When f is not continuous at x_0 , we say f is discontinuous at x_0 , or that it has a discontinuity at x_0 .

We say that the function f is not continuous in the following cases:

- 1. If f is not defined at x_0 , then f is discontinuous at x_0 .
- 2. If f defined in the neighborhood of x_0 , then f is discontinuous at x_0 if

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x \in I : |x - x_0| < \delta, and |f(x) - f(x_0)| \ge \varepsilon.$$

- 3. If $\lim_{x \to x_0} f(x) \neq \lim_{x \to x_0} f(x)$, then *f* is discontinuous at x_0 , and x_0 is a discontinuous point of the first kind.
- 4. If one of the two limits $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} f(x)$ or both limits does not exist or are not finite, then *f* is discontinuous at x_0 , and x_0 is a discontinuous point of the second kind.
- 5. If $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \neq f(x_0)$, then f is discontinuous at x_0 .

1.3.6 Uniform continuity

Definition 1.3.4. Let $f : I \longrightarrow \mathbb{R}$. Then f is uniformly continuous on I if:

 $\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall x', \ x'' \in I : \ |x' - x''| < \delta \Longrightarrow |f(x') - f(x'')| < \varepsilon.$

Lemma 1.3.1. Let $f: I \longrightarrow \mathbb{R}$ be a function. If f is uniformly continuous, then f is continuous.

1.3.7 The intermediate value theorem

Theorem 1.3.3. Suppose that $f : [a,b] \longrightarrow \mathbb{R}$ is a continuous function on a closed bounded interval. Then for every d strictly between f(a) and f(b) there is a point a < c < b such that f(c) = d.

Corollary 1.3.1. Suppose that $f : [a,b] \longrightarrow \mathbb{R}$ is a continuous function on a closed bounded interval. If f(a).f(b) < 0, then there is a point a < c < b such that f(c) = 0.

Corollary 1.3.2. Let $f : D \longrightarrow \mathbb{R}$ is a continuous function and $I \subseteq D$ is an interval, then f(I) is an interval.

Theorem 1.3.4. Let I = [a, b] be a closed interval, and $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function. Then f is uniformly continuous.

Theorem 1.3.5. Any continuous function on a closed interval [a, b] is bounded on [a, b], i.e: $\sup_{[a,b]} |f(x)| < +\infty.$

Remark 1.3.1. *1. The image by a continuous function of a closed interval of* \mathbb{R} *is a closed interval.*

2. If *I* is not closed then the interval f(I) is not necessarily of the nature of *I*. For example: $f(x) = x^2$, then f(] - 1, 1[) = [0, 1[.

1.3.8 Fixed point theorem

Definition 1.3.5. Let $f: I \longrightarrow I$ and let $\dot{x} \in I$, we say that $\dot{x} \in I$ is a fixed point of f if: $f(\dot{x}) = \dot{x}$.

Theorem 1.3.6. Let $f : [a,b] \longrightarrow [a,b]$ be a continuous function, then f admits at least one fixed point in [a,b] i.e. $\exists \dot{x} \in [a,b]$ such that $f(\dot{x}) = \dot{x}$.