
1

TP7: The Arrays

1. The vectors: (one-dimensional arrays):

1.1. Declaration :

We declare vectors in the C++ language as follows:

Type_Elements name_vector [Vector_Size];

Examples:

int v1[100];

float vect [50];

char tab3[20]; // A string

v1 is a vector of 100 integers, vect is a vector of 50 reals, and tab3 is a vector of 20

characters.

v1:

6 - 5 90 - 45 13

i=0 i=1 i=2 i=3 i=99

vect:

6 - 5.20 90 - 45.05 . . . 13

i=0 i=1 i=2 i=3 . . i=49

tab3:

U NOT & 6 (M $. . W

i=0 i=1 i=2 i=3 i=19

 Each box in a vector has a number. The number of the first box is 0 and the

number of the last box is n-1 (n is the size of the vector).

 The box number is also called index or position.

Example : V1 [2] = 90 Vect [3] = - 45.05 tab3 [2] = &

1.2. Reading a vector:

Consider a vector with integer elements of size 10: int v[10]

To fill this vector we use the cin instruction as follows:

cin>> v[0];

cin>> v[1];

cin>> v[2];

. more efficient for (i=0;i<=9;i=i+1)

. Or cin>>v[i] ;

 . using a loop

cin >>v[9] ;

The vector data can be entered vertically or horizontally as follows:

By separating the values by spaces, or by line break (Enter button).

1.3. Writing a vector:

To display the preceding vector v we use the cout instruction as follows:

cout<<v[0];

cout <<v[1];

cout <<v[2];

 . using for (i=0; i<=9; i=i+1)

. Or cout <<v[i];

. the loopfor

cout <<v[9];

2

We can write the vector data vertically, or horizontally as follows:

Reading

Writing

for(i=0;i<=9;i=i+1)

cout<<v[i]<<” “

 Space

for(i=0;i<=9;i=i+1)

cout<< “\n”<< v[i];

\n: line break

Exercise 1:

Write a C++ program that allows you to enter a student's grades in 5 modules and

displays the student's average.

2. The matrices: (two-dimensional arrays)

2.1 Declaration of a matrix:

We declare matrices in the C++ language as follows:

Type_Elements name_matrix [dimension1][dimension2];

 Max number of lines Max number of columns

Examples1:

int m1[100][100];

float mat [50][10];

char tab[20][30];

 m1is an integer matrix of 100 rows and 100 columns,

 mat is a real matrix of 50 rows and 10 columns,

 tab is a character matrix of 20 rows and 30 columns.

Examples2:

An integer matrix of 5 rows and 4 columns:

int mat[5][4];

 0 1 2 3

0 4 12 33 7

1 0 7 12 11

2 6 5 4 13

3 88 63 45 0

4 6 99 39 3

Line indices

 Rows and columns start from index 0.

 In the previous matrix: mate[2][1] = 5

Column indices

3

2.2 Reading the matrices:

Let M be an integer matrix of 5 rows and 3 columns: int M [5][3]

To read this matrix we must use two nested loops with the cin instruction as

follows:

for (i=0; i<=4; i++)

 for (i=0; j<=2; j++)

 cin >>M[i][j] ;

Noticed:

 The first loop for the row index, the second for the column index.

 The index value starts from 0 to dimension -1 (in our example 5-1 for

rows and 3-1 for columns).

2.2 Writing matrices:

To display the values of the previous matrix M we use two loops like reading

but with the cout instruction as follows:

for(i=0; i<=4; i++)

 for(i=0; j<=2; j++)

 cout <<M[i][j];

The display of values will be as follows:

To adapt the display of values and make it more readable, we must modify

the code as follows:

for(i=0; i<=4; i++){

 for(i=0; j<=2; j++)

 cost << M[i][j] << ” ”;

 cost<<”\n”

}

Exercise 2:

Write a C++ program that reads two matrices A and B, then calculate and

display matrix C; the sum of these two matrices?

Exercise 3:

Create a C++ program that removes duplicates from an array of integers:

Example :

Exercise 4:

Write a C++ program that reads a matrix and calculates its transpose; the

rows of the initial matrix become the columns of the transposed matrix, then

displays it.

4 0 6

12 7 5

33 12 4

7 11 13

4 12 33 7

0 7 12 11

6 5 4 13

4 1 3 7 3 1 7 9

4 1 3 7 9

